replicative polymerases
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Eri Koyanagi ◽  
Yoko Kakimoto ◽  
Fumiya Yoshifuji ◽  
Toyoaki Natsume ◽  
Atsushi Higashitani ◽  
...  

The division of labour between DNA polymerase underlies the accuracy and efficiency of replication. However, the roles of replicative polymerases have not been directly established in human cells. We developed polymerase usage sequence (Pu-seq) in HCT116 cells and mapped Polε and Polα usage genome wide. The polymerase usage profiles show Polε synthesises the leading strand and Polα contributes mainly to lagging strand synthesis. Combing the Polε and Polα profiles, we accurately predict the genome-wide pattern of fork directionality, zones of replication initiation and termination. We confirm that transcriptional activity shapes the patterns of initiation and termination and, by separately analysing the effect of transcription on both co-directional and converging forks, demonstrate that coupled DNA synthesis of leading and lagging strands in both co-directional and convergent forks is compromised by transcription. Polymerase uncoupling is particularly evident in the vicinity of large genes, including the two most unstable common fragile sites, FRA3B and FRA3D, thus linking transcription-induced polymerase uncoupling to chromosomal instability.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1543
Author(s):  
Jun Che ◽  
Xin Hong ◽  
Hai Rao

DNA lesions escaping from repair often block the DNA replicative polymerases required for DNA replication and are handled during the S/G2 phases by the DNA damage tolerance (DDT) mechanisms, which include the error-prone translesion synthesis (TLS) and the error-free template switching (TS) pathways. Where the mono-ubiquitylation of PCNA K164 is critical for TLS, the poly-ubiquitylation of the same residue is obligatory for TS. However, it is not known how cells divide the labor between TLS and TS. Due to the fact that the type of DNA lesion significantly influences the TLS and TS choice, we propose that, instead of altering the ratio between the mono- and poly-Ub forms of PCNA, the competition between TLS and TS would automatically determine the selection between the two pathways. Future studies, especially the single integrated lesion “i-Damage” system, would elucidate detailed mechanisms governing the choices of specific DDT pathways.


2021 ◽  
Vol 8 ◽  
Author(s):  
Richard R. Spinks ◽  
Lisanne M. Spenkelink ◽  
Nicholas E. Dixon ◽  
Antoine M. van Oijen

Helicases are molecular motors that translocate along single-stranded DNA and unwind duplex DNA. They rely on the consumption of chemical energy from nucleotide hydrolysis to drive their translocation. Specialized helicases play a critically important role in DNA replication by unwinding DNA at the front of the replication fork. The replicative helicases of the model systems bacteriophages T4 and T7, Escherichia coli and Saccharomyces cerevisiae have been extensively studied and characterized using biochemical methods. While powerful, their averaging over ensembles of molecules and reactions makes it challenging to uncover information related to intermediate states in the unwinding process and the dynamic helicase interactions within the replisome. Here, we describe single-molecule methods that have been developed in the last few decades and discuss the new details that these methods have revealed about replicative helicases. Applying methods such as FRET and optical and magnetic tweezers to individual helicases have made it possible to access the mechanistic aspects of unwinding. It is from these methods that we understand that the replicative helicases studied so far actively translocate and then passively unwind DNA, and that these hexameric enzymes must efficiently coordinate the stepping action of their subunits to achieve unwinding, where the size of each step is prone to variation. Single-molecule fluorescence microscopy methods have made it possible to visualize replicative helicases acting at replication forks and quantify their dynamics using multi-color colocalization, FRAP and FLIP. These fluorescence methods have made it possible to visualize helicases in replication initiation and dissect this intricate protein-assembly process. In a similar manner, single-molecule visualization of fluorescent replicative helicases acting in replication identified that, in contrast to the replicative polymerases, the helicase does not exchange. Instead, the replicative helicase acts as the stable component that serves to anchor the other replication factors to the replisome.


2021 ◽  
Author(s):  
Laurent G Maloisel ◽  
Emilie Ma ◽  
Eric Coic

Bypass of DNA lesions that block replicative polymerases during DNA replication relies on several DNA damage tolerance pathways. The error-prone translesion synthesis (TLS) pathway involves specialized DNA polymerases that incorporate nucleotides in front of base lesions. The template switching and the homologous recombination (HR) pathways are mostly error-free because the bypass is performed by using typically the sister chromatid as a template. This is promoted by the Rad51 recombinase that forms nucleoprotein filaments on single-strand DNA (ssDNA). The balance between error-prone and error-free pathways controls the level of mutagenesis. In yeast, the Rad55-Rad57 complex of Rad51 paralogs is required for Rad51 filament formation and stability, notably by counteracting the Srs2 antirecombinase. Several reports showed that Rad55-Rad57 promotes HR at stalled replication forks more than at DNA double-strand breaks (DSB), suggesting that this complex is more efficient at ssDNA gaps and thus, could control the recruitment of TLS polymerases. To address this point, we studied the interplay between Rad55-Rad57 and the TLS polymerases Polζ and Polη following UV radiation. We confirmed that Rad55-Rad57 protects Rad51 filaments from Srs2 dismantling activity but we found that it is also essential for the promotion of UV-induced HR independently of Srs2. In addition, we observed that cell UV sensitivity, but not DSB sensitivity, is synergistically increased when Rad55 and Polζ deletions are combined. Moreover, we found that mutagenesis and HR frequency were increased in rad55∆ mutants and in TLS-deficient cells, respectively. Finally, UV-induced HR was partially restored in Rad55-deficient cells with mutated Polζ or Polη. Overall, our data suggest that the HR and TLS pathways compete for the same ssDNA substrates and that the Rad55-Rad57 complex of Rad51 paralogs prevents the recruitment of TLS polymerases and counterbalances mutagenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tzah Feldman ◽  
Akhiad Bercovich ◽  
Yoni Moskovitz ◽  
Noa Chapal-Ilani ◽  
Amanda Mitchell ◽  
...  

AbstractThe mutational mechanisms underlying recurrent deletions in clonal hematopoiesis are not entirely clear. In the current study we inspect the genomic regions around recurrent deletions in myeloid malignancies, and identify microhomology-based signatures in CALR, ASXL1 and SRSF2 loci. We demonstrate that these deletions are the result of double stand break repair by a PARP1 dependent microhomology-mediated end joining (MMEJ) pathway. Importantly, we provide evidence that these recurrent deletions originate in pre-leukemic stem cells. While DNA polymerase theta (POLQ) is considered a key component in MMEJ repair, we provide evidence that pre-leukemic MMEJ (preL-MMEJ) deletions can be generated in POLQ knockout cells. In contrast, aphidicolin (an inhibitor of replicative polymerases and replication) treatment resulted in a significant reduction in preL-MMEJ. Altogether, our data indicate an association between POLQ independent MMEJ and clonal hematopoiesis and elucidate mutational mechanisms involved in the very first steps of leukemia evolution.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 776
Author(s):  
Joana A. Santos ◽  
Meindert H. Lamers

Multidrug resistance is a worldwide problem that is an increasing threat to global health. Therefore, the development of new antibiotics that inhibit novel targets is of great urgency. Some of the most successful antibiotics inhibit RNA transcription, RNA translation, and DNA replication. Transcription and translation are inhibited by directly targeting the RNA polymerase or ribosome, respectively. DNA replication, in contrast, is inhibited indirectly through targeting of DNA gyrases, and there are currently no antibiotics that inhibit DNA replication by directly targeting the replisome. This contrasts with antiviral therapies where the viral replicases are extensively targeted. In the last two decades there has been a steady increase in the number of compounds that target the bacterial replisome. In particular a variety of inhibitors of the bacterial replicative polymerases PolC and DnaE have been described, with one of the DNA polymerase inhibitors entering clinical trials for the first time. In this review we will discuss past and current work on inhibition of DNA replication, and the potential of bacterial DNA polymerase inhibitors in particular as attractive targets for a new generation of antibiotics.


2020 ◽  
Vol 74 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Mark D. Greci ◽  
Stephen D. Bell

It is now well recognized that the information processing machineries of archaea are far more closely related to those of eukaryotes than to those of their prokaryotic cousins, the bacteria. Extensive studies have been performed on the structure and function of the archaeal DNA replication origins, the proteins that define them, and the macromolecular assemblies that drive DNA unwinding and nascent strand synthesis. The results from various archaeal organisms across the archaeal domain of life show surprising levels of diversity at many levels—ranging from cell cycle organization to chromosome ploidy to replication mode and nature of the replicative polymerases. In the following, we describe recent advances in the field, highlighting conserved features and lineage-specific innovations.


2020 ◽  
Author(s):  
Xueqing Zou ◽  
Gene Ching Chiek Koh ◽  
Arjun Scott Nanda ◽  
Andrea Degasperi ◽  
Katie Urgo ◽  
...  

AbstractMutational signatures are imprints of pathophysiological processes arising through tumorigenesis. Here, we generate isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, culture them in the absence of added DNA damage, and perform wholegenome sequencing of 173 daughter subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produce marked mutational signatures indicative of being critical mitigators of endogenous DNA changes. Detailed analyses reveal that 8-oxo-dG removal by different repair proteins is sequence-context-specific while uracil clearance is sequencecontext-independent. Signatures of mismatch repair (MMR) deficiency show components of C>A transversions due to oxidative damage, T>C and C>T transitions due to differential misincorporation by replicative polymerases, and T>A transversions for which we propose a ‘reverse template slippage’ model. ΔMLH1, ΔMSH6, and ΔMSH2 signatures are similar to each other but distinct from ΔPMS2. We validate these gene-specificities in cells from patients with Constitutive Mismatch Repair Deficiency Syndrome. Based on these experimental insights, we develop a classifier, MMRDetect, for improved clinical detection of MMR-deficient tumors.


2020 ◽  
Vol 477 (5) ◽  
pp. 1049-1059 ◽  
Author(s):  
Noe Baruch-Torres ◽  
Junpei Yamamoto ◽  
Víctor Juárez-Quintero ◽  
Shigenori Iwai ◽  
Luis G. Brieba

Plant organelles cope with endogenous DNA damaging agents, byproducts of respiration and photosynthesis, and exogenous agents like ultraviolet light. Plant organellar DNA polymerases (DNAPs) are not phylogenetically related to yeast and metazoan DNAPs and they harbor three insertions not present in any other DNAPs. Plant organellar DNAPs from Arabidopsis thaliana (AtPolIA and AtPolIB) are translesion synthesis (TLS) DNAPs able to bypass abasic sites, a lesion that poses a strong block to replicative polymerases. Besides abasic sites, reactive oxidative species and ionizing radiation react with thymine resulting in thymine glycol (Tg), a DNA adduct that is also a strong block to replication. Here, we report that AtPolIA and AtPolIB bypass Tg by inserting an adenine opposite the lesion and efficiently extend from a Tg-A base pair. The TLS ability of AtPolIB is mapped to two conserved lysine residues: K593 and K866. Residue K593 is situated in insertion 1 and K866 is in insertion 3. With basis on the location of both insertions on a structural model of AtPolIIB, we hypothesize that the two positively charged residues interact to form a clamp around the primer-template. In contrast with nuclear and bacterial replication, where lesion bypass involves an interplay between TLS and replicative DNA polymerases, we postulate that plant organellar DNAPs evolved to exert replicative and TLS activities.


Mutagenesis ◽  
2019 ◽  
Author(s):  
Roberto Silvestri ◽  
Stefano Landi

Abstract Human cancers arise from the alteration of genes involved in important pathways that mainly affect cell growth and proliferation. DNA replication and DNA damages recognition and repair are among these pathways and DNA polymerases that take part in these processes are frequently involved in cancer onset and progression. For example, damaging alterations within the proofreading domain of replicative polymerases, often reported in patients affected by colorectal cancer (CRC), are considered risk factors and drivers of carcinogenesis as they can lead to the accumulation of several mutations throughout the genome. Thus, replicative polymerases can be involved in cancer when losses of their physiological functions occur. On the contrary, reparative polymerases are often involved in cancer precisely because of their physiological role. In fact, their ability to repair and bypass DNA damages, which confers genome stability, can also counteract the effect of most anticancer drugs. In addition, the altered expression can characterise some type of cancers, which exacerbates this aspect. For example, all of the DNA polymerases involved a damage bypass mechanism, known as translesion synthesis, with the only exception of polymerase theta, are downregulated in CRC. Conversely, in pancreatic ductal adenocarcinoma (PDAC), most of these polymerase result upregulated. This suggests that different types of cancer can rely on different reparative polymerases to acquire drug resistance. Here we will examine all of the aspects that link DNA polymerases with CRC and PDAC.


Sign in / Sign up

Export Citation Format

Share Document