scholarly journals PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ

2018 ◽  
Vol 115 (28) ◽  
pp. E6477-E6486 ◽  
Author(s):  
Beata Jonik-Nowak ◽  
Thomas Menneteau ◽  
Didier Fesquet ◽  
Véronique Baldin ◽  
Catherine Bonne-Andrea ◽  
...  

PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.

2017 ◽  
Author(s):  
Beata Jonik-Nowak ◽  
Thomas Menneteau ◽  
Didier Fesquet ◽  
Véronique Baldin ◽  
Catherine Bonne-Andrea ◽  
...  

ABSTRACTPA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However its exact mechanisms of action are unclear and likely to involve additional partners that remain to be identified. Here we report the identification of the first cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal Bodies by inhibition of its association with the key Cajal body component coilin. Altogether, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.Significance StatementThe 20S proteasome is a key actor of the control of protein levels and integrity in cells. To perform its multiple functions, it works with a series of regulators, among which a nuclear complex called PA28γ. In particular, PA28γ participates in the regulation of cell proliferation and nuclear dynamics. We describe here the characterization of a novel protein, PIP30/FAM192A, which binds tightly to PA28γ and favors its interaction with the 20S proteasome while inhibiting its association with coilin, a central component of nuclear Cajal bodies. Thus PIP30/FAM192A critically controls the interactome and consequently the functions of PA28γ, and appears to be a new player in the fine regulation of intracellular proteostasis in the cell nucleus.


2015 ◽  
Vol 112 (40) ◽  
pp. E5543-E5551 ◽  
Author(s):  
Kamila Kalinowska ◽  
Marie-Kristin Nagel ◽  
Kaija Goodman ◽  
Laura Cuyas ◽  
Franziska Anzenberger ◽  
...  

Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 208 ◽  
Author(s):  
Liu He ◽  
Michael St. John James ◽  
Marin Radovcic ◽  
Ivana Ivancic-Bace ◽  
Edward L. Bolt

Cas3 has essential functions in CRISPR immunity but its other activities and roles, in vitro and in cells, are less widely known. We offer a concise review of the latest understanding and questions arising from studies of Cas3 mechanism during CRISPR immunity, and highlight recent attempts at using Cas3 for genetic editing. We then spotlight involvement of Cas3 in other aspects of cell biology, for which understanding is lacking—these focus on CRISPR systems as regulators of cellular processes in addition to defense against mobile genetic elements.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Tom Delanghe ◽  
Jon Huyghe ◽  
Seungheon Lee ◽  
Dario Priem ◽  
Samya Van Coillie ◽  
...  

AbstractButylate hydroxyanisole (BHA) is a synthetic phenol that is widely utilized as a preservative by the food and cosmetic industries. The antioxidant properties of BHA are also frequently used by scientists to claim the implication of reactive oxygen species (ROS) in various cellular processes, including cell death. We report on the surprising finding that BHA functions as a direct inhibitor of RIPK1, a major signaling hub downstream of several immune receptors. Our in silico analysis predicts binding of 3-BHA, but not 2-BHA, to RIPK1 in an inactive DLG-out/Glu-out conformation, similar to the binding of the type III inhibitor Nec-1s to RIPK1. This predicted superior inhibitory capacity of 3-BHA over 2-BHA was confirmed in cells and using in vitro kinase assays. We demonstrate that the reported protective effect of BHA against tumor necrosis factor (TNF)-induced necroptotic death does not originate from ROS scavenging but instead from direct RIPK1 enzymatic inhibition, a finding that most probably extends to other reported effects of BHA. Accordingly, we show that BHA not only protects cells against RIPK1-mediated necroptosis but also against RIPK1 kinase-dependent apoptosis. We found that BHA treatment completely inhibits basal and induced RIPK1 enzymatic activity in cells, monitored at the level of TNFR1 complex I under apoptotic conditions or in the cytosol under necroptosis. Finally, we show that oral administration of BHA protects mice from RIPK1 kinase-dependent lethality caused by TNF injection, a model of systemic inflammatory response syndrome. In conclusion, our results demonstrate that BHA can no longer be used as a strict antioxidant and that new functions of RIPK1 may emerge from previously reported effects of BHA.


1992 ◽  
Vol 2 (10) ◽  
pp. S88
Author(s):  
M Davies ◽  
G J Thomas ◽  
L D Shewring ◽  
R M Mason

In cultures of human adult glomerular mesangial cells, large chondroitin sulfate proteoglycans (CSPG) and small dermatan sulfate proteoglycans (DSPG) are synthesized. The large CSPG has a core protein, M(r) of 400,000 (major) and M(r) of 500,000 (minor), and binds to hyaluronic acid to form large aggregates. The two small DSPGs (Mr of approximately 350,000 and M(r) of approximately 200,000) were related to biglycan and decorin, respectively. The majority of these proteoglycans were located in the culture medium, but a hydrophobic form of the CSPG was extracted from the cell layer. Mesangial cells in the growing phase synthesized and secreted all three types of proteoglycans, but in cells arrested in G0 by serum deprivation the incorporation of (35S)sulfate in CSPG was drastically reduced. In the same cells stimulated to proliferate by replacing the medium with one containing serum, the synthesis of CSPG dramatically enhanced. The synthesis of CSPG and DSPG was also elevated in cells cocultured with cytokines but in contrast was significantly reduced when cultured in medium containing hyperglycemic levels of glucose. Finally, preliminary experiments are reported that indicate that CSPG and DSPG bind to low-density lipoproteins in vitro. These observations suggest a possible specialized function for proteoglycans in cellular processes characteristic of glomerular disease.


1998 ◽  
Vol 95 (16) ◽  
pp. 9295-9300 ◽  
Author(s):  
Bradley J. Schnackenberg ◽  
Alexey Khodjakov ◽  
Conly L. Rieder ◽  
Robert E. Palazzo

Animal cells contain a single centrosome that nucleates and organizes a polarized array of microtubules which functions in many cellular processes. In most cells the centrosome is composed of two centrioles surrounded by an ill-defined “cloud” of pericentriolar material. Recently, γ-tubulin-containing 25-nm diameter ring structures have been identified as likely microtubule nucleation sites within the pericentriolar material of isolated centrosomes. Here we demonstrate that when Spisula centrosomes are extracted with 1.0 M KI they lose their microtubule nucleation potential and appear by three-dimensional electron microscopy as a complex lattice, built from 12- to 15-nm thick elementary fiber(s), that lack centrioles and 25-nm rings. Importantly, when these remnants are incubated in extracts prepared from Spisula oocytes they recover their 25-nm rings, γ-tubulin, and microtubule nucleation potential. This recovery process occurs in the absence of microtubules, divalent cations, and nucleotides. Thus, in animals the centrosome is structurally organized around a KI-insoluble filament-based “centromatrix” that serves as a scaffold to which those proteins required for microtubule nucleation bind, either directly or indirectly, in a divalent cation and nucleotide independent manner.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1483
Author(s):  
Anna Fidor ◽  
Katarzyna Cekała ◽  
Ewa Wieczerzak ◽  
Marta Cegłowska ◽  
Franciszek Kasprzykowski ◽  
...  

Nostocyclopeptides (Ncps) are a small class of bioactive nonribosomal peptides produced solely by cyanobacteria of the genus Nostoc. In the current work, six Ncps were isolated from Nostoc edaphicum strain CCNP1411. The bioactivity of these compounds was tested in vitro against 20S proteasome, a proteolytic complex that plays an important role in maintaining cellular proteostasis. Dysfunction of the complex leads to many pathological disorders. The assays indicated selective activity of specific Ncp variants. For two linear peptide aldehydes, Ncp-A2-L and Ncp-E2-L, the inhibitory effects on chymotrypsin-like activity were revealed, while the cyclic variant, Ncp-A2, inactivated the trypsin-like site of this enzymatic complex. The aldehyde group was confirmed to be an important element of the chymotrypsin-like activity inhibitors. The nostocyclopeptides, as novel inhibitors of 20S proteasome, increased the number of natural products that can be considered potential regulators of cellular processes.


2021 ◽  
Author(s):  
Jörg Schweiggert ◽  
Gregor Habeck ◽  
Sandra Hess ◽  
Felix Mikus ◽  
Klaus Meese ◽  
...  

AbstractThe microtubule depolymerase Kif2C/MCAK plays important roles in various cellular processes and is frequently overexpressed in different cancer types. Despite the importance of its correct abundance, remarkably little is known about how MCAK levels are regulated in cells.Using comprehensive screening on protein microarrays, we identified 161 candidate substrates of the multi-subunit ubiquitin E3 ligase SCFFbxw5, including MCAK. In vitro reconstitution assays demonstrate that MCAK and its closely related orthologs Kif2A and Kif2B become efficiently polyubiquitylated by neddylated SCFFbxw5 and Cdc34, without requiring preceding modifications. In cells, SCFFbxw5 targets MCAK for proteasomal degradation specifically during G2/M. While this seems largely dispensable for mitotic progression, loss of Fbxw5 leads to increased MCAK levels at basal bodies, which impair formation of primary cilia in the following G1. We have thus identified a novel regulatory event of ciliogenesis that occurs already within the G2/M phase of the preceding cell cycle.


2005 ◽  
Vol 86 (9) ◽  
pp. 2595-2603 ◽  
Author(s):  
Lionel Ballut ◽  
Martin Drucker ◽  
Martine Pugnière ◽  
Florence Cambon ◽  
Stéphane Blanc ◽  
...  

The proteasome is a multicatalytic complex involved in many cellular processes in eukaryotes, such as protein and RNA turnover, cell division, signal transduction, transcription and translation. Intracellular pathogens are targets of its enzymic activities, and a number of animal viruses are known to interfere with these activities. The first evidence that a plant virus protein, the helper component-proteinase (HcPro) of Lettuce mosaic virus (LMV; genus Potyvirus), interferes with the 20S proteasome ribonuclease is reported here. LMV infection caused an aggregation of the 20S proteasome to high-molecular mass structures in vivo, and specific binding of HcPro to the proteasome was confirmed in vitro using two different approaches. HcPro inhibited the 20S endonuclease activity in vitro, while its proteolytic activities were unchanged or slightly stimulated. This ability of HcPro, a pathogenicity regulator of potyviruses, to interfere with some of the catalytic functions of the 20S proteasome suggests the existence of a novel type of defence and counter-defence interplay in the course of interaction between potyviruses and their hosts.


2012 ◽  
Vol 443 (1) ◽  
pp. 145-151 ◽  
Author(s):  
Hsiang-Hao Chuang ◽  
Chih-Hsuan Yang ◽  
Yeou-Guang Tsay ◽  
Chih-Yi Hsu ◽  
Ling-Ming Tseng ◽  
...  

ROCK (Rho-associated protein kinase), a downstream effector of RhoA, plays an important role in many cellular processes. Accumulating evidence has shown the involvement of ROCK activation in the pathogenesis of many diseases. However, a reagent capable of detecting ROCK activation directly is lacking. In the present study, we show autophosphorylation of ROCKII in an in vitro kinase reaction. The phosphorylation sites were identified by MS, and the major phosphorylation site was found to be at the highly conserved residue Ser1366. A phospho-specific antibody was generated that can specifically recognize ROCKII Ser1366 phosphorylation. We found that the extent of Ser1366 phosphorylation of endogenous ROCKII is correlated with that of myosin light chain phosphorylation in cells in response to RhoA stimulation, showing that Ser1366 phosphorylation reflects its kinase activity. In addition, ROCKII Ser1366 phosphorylation could be detected in human breast tumours by immunohistochemical staining. The present study provides a new approach for revealing the ROCKII activation status by probing ROCKII Ser1366 phosphorylation directly in cells or tissues.


Sign in / Sign up

Export Citation Format

Share Document