scholarly journals Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3

2015 ◽  
Vol 112 (40) ◽  
pp. E5543-E5551 ◽  
Author(s):  
Kamila Kalinowska ◽  
Marie-Kristin Nagel ◽  
Kaija Goodman ◽  
Laura Cuyas ◽  
Franziska Anzenberger ◽  
...  

Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.

2020 ◽  
Vol 21 (16) ◽  
pp. 5638
Author(s):  
Jinhong Cho ◽  
Jinyoung Park ◽  
Eunice EunKyeong Kim ◽  
Eun Joo Song

Deubiquitinating enzymes regulate various cellular processes, particularly protein degradation, localization, and protein–protein interactions. The dysregulation of deubiquitinating enzyme (DUB) activity has been linked to several diseases; however, the function of many DUBs has not been identified. Therefore, the development of methods to assess DUB activity is important to identify novel DUBs, characterize DUB selectivity, and profile dynamic DUB substrates. Here, we review various methods of evaluating DUB activity using cell lysates or purified DUBs, as well as the types of probes used in these methods. In addition, we introduce some techniques that can deliver DUB probes into the cells and cell-permeable activity-based probes to directly visualize and quantify DUB activity in live cells. This review could contribute to the development of DUB inhibitors by providing important information on the characteristics and applications of various probes used to evaluate and detect DUB activity in vitro and in vivo.


2019 ◽  
Vol 5 (4) ◽  
pp. eaau7198 ◽  
Author(s):  
Sourav Maity ◽  
Christophe Caillat ◽  
Nolwenn Miguet ◽  
Guidenn Sulbaran ◽  
Gregory Effantin ◽  
...  

Many cellular processes such as endosomal vesicle budding, virus budding, and cytokinesis require extensive membrane remodeling by the endosomal sorting complex required for transport III (ESCRT-III). ESCRT-III protein family members form spirals with variable diameters in vitro and in vivo inside tubular membrane structures, which need to be constricted to proceed to membrane fission. Here, we show, using high-speed atomic force microscopy and electron microscopy, that the AAA-type adenosine triphosphatase VPS4 constricts and cleaves ESCRT-III CHMP2A-CHMP3 helical filaments in vitro. Constriction starts asymmetrically and progressively decreases the diameter of CHMP2A-CHMP3 tubular structure, thereby coiling up the CHMP2A-CHMP3 filaments into dome-like end caps. Our results demonstrate that VPS4 actively constricts ESCRT-III filaments and cleaves them before their complete disassembly. We propose that the formation of ESCRT-III dome-like end caps by VPS4 within a membrane neck structure constricts the membrane to set the stage for membrane fission.


2006 ◽  
Vol 17 (5) ◽  
pp. 2190-2199 ◽  
Author(s):  
Kurato Mohri ◽  
Kanako Ono ◽  
Robinson Yu ◽  
Sawako Yamashiro ◽  
Shoichiro Ono

Regulated disassembly of actin filaments is involved in several cellular processes that require dynamic rearrangement of the actin cytoskeleton. Actin-interacting protein (AIP) 1 specifically enhances disassembly of actin-depolymerizing factor (ADF)/cofilin-bound actin filaments. In vitro, AIP1 actively disassembles filaments, caps barbed ends, and binds to the side of filaments. However, how AIP1 functions in the cellular actin cytoskeletal dynamics is not understood. We compared biochemical and in vivo activities of mutant UNC-78 proteins and found that impaired activity of mutant UNC-78 proteins to enhance disassembly of ADF/cofilin-bound actin filaments is associated with inability to regulate striated organization of actin filaments in muscle cells. Six functionally important residues are present in the N-terminal β-propeller, whereas one residue is located in the C-terminal β-propeller, suggesting the presence of two separate sites for interaction with ADF/cofilin and actin. In vitro, these mutant UNC-78 proteins exhibited variable alterations in actin disassembly and/or barbed end-capping activities, suggesting that both activities are important for its in vivo function. These results indicate that the actin-regulating activity of AIP1 in cooperation with ADF/cofilin is essential for its in vivo function to regulate actin filament organization in muscle cells.


2008 ◽  
Vol 28 (8) ◽  
pp. 2771-2781 ◽  
Author(s):  
Nadine Martin ◽  
Klaus Schwamborn ◽  
Henning Urlaub ◽  
Boyi Gan ◽  
Jun-Lin Guan ◽  
...  

ABSTRACT The members of the protein inhibitor of activated STAT (PIAS) family of proteins are implicated in fundamental cellular processes, including transcriptional regulation, either through action as E3 SUMO ligases or through SUMO-independent effects. We report here the identification of FIP200 (focal adhesion kinase family-interacting protein of 200 kDa) as a new PIASy-interacting protein. We show that the interaction depends on the integrity of the RING finger of PIASy and the carboxy terminus of FIP200. Both in vitro and in vivo sumoylation assays failed to reveal any sumoylation of FIP200, suggesting that FIP200 is not a bona fide SUMO substrate. Immunofluorescence microscopy and subcellular fractionation, either upon forced PIASy expression or in the absence of PIASy, revealed that interaction with PIASy redistributes FIP200 from the cytoplasm to the nucleus, correlating with abrogation of FIP200 regulation of TSC/S6K signaling. Conversely, FIP200 enhances the transcriptional activation of the p21 promoter by PIASy whereas PIASy transcription activity is severely reduced upon FIP200 depletion by RNA interference. Chromatin immunoprecipitation analysis demonstrates that endogenous PIASy and FIP200 are corecruited to the p21 promoter. Altogether, these results provide the first evidence for the existence of a close—spatially controlled—mode of regulation of FIP200 and PIASy nucleocytoplasmic functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Seemana Bhattacharya ◽  
Mrinal Kanti Ghosh

The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge bothin vitroandin vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes.


2011 ◽  
Vol 286 (41) ◽  
pp. 35380-35387 ◽  
Author(s):  
Yide Mei ◽  
Allison Alcivar Hahn ◽  
Shimin Hu ◽  
Xiaolu Yang

The inhibitors of apoptosis (IAPs) are critical regulators of apoptosis and other fundamental cellular processes. Many IAPs are RING domain-containing ubiquitin E3 ligases that control the stability of their interacting proteins. However, how IAP stability is regulated remains unclear. Here we report that USP19, a deubiquitinating enzyme, interacts with cellular IAP 1 (c-IAP1) and c-IAP2. Knockdown of USP19 decreases levels of both c-IAPs, whereas overexpression of USP19 results in a marked increase in c-IAP levels. USP19 effectively removes ubiquitin from c-IAPs in vitro, but it stabilizes c-IAPs in vivo mainly through deubiquitinase-independent mechanisms. The deubiquitinase activity is involved in the stabilization of USP19 itself, which is facilitated by USP19 self-association. Functionally, knockdown of USP19 enhances TNFα-induced caspase activation and apoptosis in a c-IAP1 and 2-dependent manner. These results suggest that the self-ubiquitin ligase activity of c-IAPs is inhibited by USP19 and implicate deubiquitinating enzymes in the regulation of IAP stability.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2021 ◽  
pp. 1-12
Author(s):  
Pengli Wang ◽  
Dan Zheng ◽  
Hongyang Qi ◽  
Qi Gao

BACKGROUND: MicroRNAs (miRNAs) play potential role in the development of various types of cancer conditions including pancreatic cancer (PC) targeting several cellular processes. Present study was aimed to evaluate function of miR-125b and the mechanism involved in PC. METHODS: Cell migration, MTT and BrdU study was done to establish the migration capability, cell viability and cell proliferation respectively. Binding sites for miR-125b were recognized by luciferase assay, expression of protein by western blot and immunofluorescence assay. In vivo study was done by BALB/c nude xenograft mice for evaluating the function of miR-125b. RESULTS: The study showed that expression of miR-125b was elevated in PC cells and tissues, and was correlated to proliferation and migration of cells. Also, over-expression of miR-125b encouraged migration, metastasis and proliferation of BxPC-3 cells, the suppression reversed it. We also noticed that thioredoxin-interacting protein (TXNIP) was the potential target of miR-125b. The outcomes also suggested that miR-125b governed the expression of TXNIP inversely via directly attaching to the 3′-UTR activating hypoxia-inducible factor 1α (HIF1α). Looking into the relation between HIF1α and TXNIP, we discovered that TXNIP caused the degradation and export of HIF1α by making a complex with it. CONCLUSION: The miR-125b-TXNIP-HIF1α pathway may serve useful strategy for diagnosing and treating PC.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haiying Zhou ◽  
Bo Wan ◽  
Ivan Grubisic ◽  
Tommy Kaplan ◽  
Robert Tjian

Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (UCP1). Previously, we reported that the TATA-binding protein associated factor 7L (TAF7L) is an important regulator of white adipose tissue (WAT) differentiation. In this study, we show that TAF7L also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, TAF7L-containing TFIID complexes associate with PPARγ to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that the presence of the tissue-specific TAF7L subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification.


2010 ◽  
Vol 21 (13) ◽  
pp. 2285-2296 ◽  
Author(s):  
Laëtitia Chotard ◽  
Ashwini K. Mishra ◽  
Marc-André Sylvain ◽  
Simon Tuck ◽  
David G. Lambright ◽  
...  

During endosome maturation the early endosomal Rab5 GTPase is replaced with the late endosomal Rab7 GTPase. It has been proposed that active Rab5 can recruit and activate Rab7, which in turn could inactivate and remove Rab5. However, many of the Rab5 and Rab7 regulators that mediate endosome maturation are not known. Here, we identify Caenorhabditis elegans TBC-2, a conserved putative Rab GTPase-activating protein (GAP), as a regulator of endosome to lysosome trafficking in several tissues. We show that tbc-2 mutant animals accumulate enormous RAB-7–positive late endosomes in the intestine containing refractile material. RAB-5, RAB-7, and components of the homotypic fusion and vacuole protein sorting (HOPS) complex, a RAB-7 effector/putative guanine nucleotide exchange factor (GEF), are required for the tbc-2(−) intestinal phenotype. Expression of activated RAB-5 Q78L in the intestine phenocopies the tbc-2(−) large late endosome phenotype in a RAB-7 and HOPS complex-dependent manner. TBC-2 requires the catalytic arginine-finger for function in vivo and displays the strongest GAP activity on RAB-5 in vitro. However, TBC-2 colocalizes primarily with RAB-7 on late endosomes and requires RAB-7 for membrane localization. Our data suggest that TBC-2 functions on late endosomes to inactivate RAB-5 during endosome maturation.


Sign in / Sign up

Export Citation Format

Share Document