scholarly journals Visual attention is not limited to the oculomotor range

2019 ◽  
Vol 116 (19) ◽  
pp. 9665-9670 ◽  
Author(s):  
Nina M. Hanning ◽  
Martin Szinte ◽  
Heiner Deubel

Both patients with eye movement disorders and healthy participants whose oculomotor range had been experimentally reduced have been reported to show attentional deficits at locations unreachable by their eyes. Whereas previous studies were mainly based on the evaluation of reaction times, we measured visual sensitivity before saccadic eye movements and during fixation at locations either within or beyond participants’ oculomotor range. Participants rotated their heads to prevent them from performing large rightward saccades. In this posture, an attentional cue was presented inside or outside their oculomotor range. Participants either made a saccade to the cue or maintained fixation while they discriminated the orientation of a visual noise patch. In contrast to previous reports, we found that the cue attracted visual attention regardless of whether it was presented within or beyond participants’ oculomotor range during both fixation and saccade preparation. Moreover, when participants aimed to look to a cue that they could not reach with their eyes, we observed no benefit at their actual saccade endpoint. This demonstrates that spatial attention is not coupled to the executed oculomotor program but instead can be deployed unrestrictedly also toward locations to which no saccade can be executed. Our results are compatible with the view that covert and overt attentional orienting are guided by feedback projections of visual and visuomotor neurons of the gaze control system, irrespective of oculomotor limitations.

2015 ◽  
Vol 21 (7) ◽  
pp. 545-557 ◽  
Author(s):  
Bruno Fimm ◽  
Klaus Willmes ◽  
Will Spijkers

AbstractBased on previous studies demonstrating detrimental effects of reduced alertness on attentional orienting our study seeks to examine covert and overt attentional orienting in different arousal states. We hypothesized an attentional asymmetry with increasing reaction times to stimuli presented to the left visual field in a state of maximally reduced arousal. Eleven healthy participants underwent sleep deprivation and were examined repeatedly every 4 hr over 28 hr in total with two tasks measuring covert and overt orienting of attention. Contrary to our hypothesis, a reduction of arousal did not induce any asymmetry of overt orienting. Even in participants with profound and significant attentional asymmetries in covert orienting no substantial reaction time differences between left- and right-sided targets in the overt orienting task could be observed. This result is not in agreement with assumptions of a tight coupling of covert and overt attentional processes. In conclusion, we found differential effects of lowered arousal induced by sleep deprivation on covert and overt orienting of attention. This pattern of results points to a neuronal non-overlap of brain structures subserving these functions and a differential influence of the norepinephrine system on these modes of spatial attention. (JINS, 2015,21, 545–557)


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 137-137
Author(s):  
W H Ehrenstein ◽  
J Lewald ◽  
L Schlykowa

We asked to what extent the respective gaze direction influences (i) the spatial congruence of perceived direction of auditory and visual cues, and (ii) the discrimination of the direction of target motion. With fixed head position, subjects directed their gaze in various positions and localised auditory targets (band-pass noise, 2 kHz) presented at one of nine positions (straight ahead, or four symmetric positions to the left or right separated by 2.75 deg, respectively). Forced-choice judgements, whether the sound was perceived to the left or right of a visual reference light, show that the azimuth of the sound was perceived as slightly shifted to the left of a visual reference when the gaze was directed to the left, and vice versa. The maximum of this relative auditory - visual shift was 4.7 deg over a range of 45 deg (left or right) of gaze directions. In (ii), a spot of light started at the centre of a monitor and moved at 2 or 12 deg s−1 leftward or rightward. Subjects reported the direction by pressing a key; their gaze was directed at 0, 8, or 16 deg to the left or right. Mean choice-reaction times increased with increasing gaze eccentricity, but differently depending on stimulus direction and speed: with left fixation they were shorter for leftward than rightward motion; with right fixation they were shorter for rightward motion. This effect was stronger for the slow than for the fast stimulus speed. Thus, facilitation occurs when stimuli move with moderate velocity toward the direction of gaze. While the auditory-visual shift in (i) may reflect an incomplete transformation of spatial (craniocentric and oculocentric) coordinates as suggested by recordings in the primate midbrain, the results in (ii) conform with reports of specialised units in the posterior parietal cortex (areas LIP, 7a, MST) that, in registering oculomotor position, modulate visual sensitivity.


1981 ◽  
Vol 46 (4) ◽  
pp. 828-838 ◽  
Author(s):  
T. Vilis ◽  
J. Hore

1. The accuracy of saccadic eye movements made by trained Cebus monkeys was studied during reversible lesions produced by cooling through probes implanted between the interpositus and fastigial nuclei (medial probe) or lateral to the dentate nucleus (lateral probe). 2. Cooling through the lateral probe did not impair the accuracy of vertical or horizontal saccades, However, cooling through the medial probe produced a dysmetria whose magnitude was dependent on the position of the eye and on the direction of the saccade. 3. The amplitude/duration relation of dysmetria saccades was not significantly different from that of normal saccades. 4. The trajectories of the horizontal and vertical components of oblique saccades remained essentially straight during medial probe cooling in spite of unequal dysmetria in the two components. This suggests that the mechanism that produces a dysmetria in one component must interact with the gaze center that determines the duration of the other component. 5. Cerebellar nuclear cooling through either lateral of medial probes did not alter the saccadic reaction time to a randomly timed step change in target position. This result differs from that found for limb movements where cerebellar dysmetria was associated with increased reaction times. 6. These results provide evidence that the cerebellum through the medial nuclei normally plays a role in terminating, but not in initiating, saccades.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5178
Author(s):  
Sangbong Yoo ◽  
Seongmin Jeong ◽  
Seokyeon Kim ◽  
Yun Jang

Gaze movement and visual stimuli have been utilized to analyze human visual attention intuitively. Gaze behavior studies mainly show statistical analyses of eye movements and human visual attention. During these analyses, eye movement data and the saliency map are presented to the analysts as separate views or merged views. However, the analysts become frustrated when they need to memorize all of the separate views or when the eye movements obscure the saliency map in the merged views. Therefore, it is not easy to analyze how visual stimuli affect gaze movements since existing techniques focus excessively on the eye movement data. In this paper, we propose a novel visualization technique for analyzing gaze behavior using saliency features as visual clues to express the visual attention of an observer. The visual clues that represent visual attention are analyzed to reveal which saliency features are prominent for the visual stimulus analysis. We visualize the gaze data with the saliency features to interpret the visual attention. We analyze the gaze behavior with the proposed visualization to evaluate that our approach to embedding saliency features within the visualization supports us to understand the visual attention of an observer.


2008 ◽  
Vol 100 (4) ◽  
pp. 1848-1867 ◽  
Author(s):  
Sigrid M. C. I. van Wetter ◽  
A. John van Opstal

Such perisaccadic mislocalization is maximal in the direction of the saccade and varies systematically with the target-saccade onset delay. We have recently shown that under head-fixed conditions perisaccadic errors do not follow the quantitative predictions of current visuomotor models that explain these mislocalizations in terms of spatial updating. These models all assume sluggish eye-movement feedback and therefore predict that errors should vary systematically with the amplitude and kinematics of the intervening saccade. Instead, we reported that errors depend only weakly on the saccade amplitude. An alternative explanation for the data is that around the saccade the perceived target location undergoes a uniform transient shift in the saccade direction, but that the oculomotor feedback is, on average, accurate. This “ visual shift” hypothesis predicts that errors will also remain insensitive to kinematic variability within much larger head-free gaze shifts. Here we test this prediction by presenting a brief visual probe near the onset of gaze saccades between 40 and 70° amplitude. According to models with inaccurate gaze-motor feedback, the expected perisaccadic errors for such gaze shifts should be as large as 30° and depend heavily on the kinematics of the gaze shift. In contrast, we found that the actual peak errors were similar to those reported for much smaller saccadic eye movements, i.e., on average about 10°, and that neither gaze-shift amplitude nor kinematics plays a systematic role. Our data further corroborate the visual origin of perisaccadic mislocalization under open-loop conditions and strengthen the idea that efferent feedback signals in the gaze-control system are fast and accurate.


2005 ◽  
Vol 93 (3) ◽  
pp. 1223-1234 ◽  
Author(s):  
Daniel J. Tollin ◽  
Luis C. Populin ◽  
Jordan M. Moore ◽  
Janet L. Ruhland ◽  
Tom C. T. Yin

In oculomotor research, there are two common methods by which the apparent location of visual and/or auditory targets are measured, saccadic eye movements with the head restrained and gaze shifts (combined saccades and head movements) with the head unrestrained. Because cats have a small oculomotor range (approximately ±25°), head movements are necessary when orienting to targets at the extremes of or outside this range. Here we tested the hypothesis that the accuracy of localizing auditory and visual targets using more ethologically natural head-unrestrained gaze shifts would be superior to head-restrained eye saccades. The effect of stimulus duration on localization accuracy was also investigated. Three cats were trained using operant conditioning with their heads initially restrained to indicate the location of auditory and visual targets via eye position. Long-duration visual targets were localized accurately with little error, but the locations of short-duration visual and both long- and short-duration auditory targets were markedly underestimated. With the head unrestrained, localization accuracy improved substantially for all stimuli and all durations. While the improvement for long-duration stimuli with the head unrestrained might be expected given that dynamic sensory cues were available during the gaze shifts and the lack of a memory component, surprisingly, the improvement was greatest for the auditory and visual stimuli with the shortest durations, where the stimuli were extinguished prior to the onset of the eye or head movement. The underestimation of auditory targets with the head restrained is explained in terms of the unnatural sensorimotor conditions that likely result during head restraint.


2018 ◽  
Vol 71 (9) ◽  
pp. 1860-1872 ◽  
Author(s):  
Stephen RH Langton ◽  
Alex H McIntyre ◽  
Peter JB Hancock ◽  
Helmut Leder

Research has established that a perceived eye gaze produces a concomitant shift in a viewer’s spatial attention in the direction of that gaze. The two experiments reported here investigate the extent to which the nature of the eye movement made by the gazer contributes to this orienting effect. On each trial in these experiments, participants were asked to make a speeded response to a target that could appear in a location toward which a centrally presented face had just gazed (a cued target) or in a location that was not the recipient of a gaze (an uncued target). The gaze cues consisted of either fast saccadic eye movements or slower smooth pursuit movements. Cued targets were responded to faster than uncued targets, and this gaze-cued orienting effect was found to be equivalent for each type of gaze shift both when the gazes were un-predictive of target location (Experiment 1) and counterpredictive of target location (Experiment 2). The results offer no support for the hypothesis that motion speed modulates gaze-cued orienting. However, they do suggest that motion of the eyes per se, regardless of the type of movement, may be sufficient to trigger an orienting effect.


2021 ◽  
Vol 4 (3) ◽  
pp. 156-162
Author(s):  
André Sevenius Nilsen ◽  
Bjørn Erik Juel ◽  
Nadine Farnes ◽  
Luis Romundstad ◽  
Johan Frederik Storm

AbstractBackground and aimsWhile psychedelic agents are known to have powerful, but largely unexplained, effects on contents of consciousness, there is an increasing interest in the potential clinical usefulness of such drugs for therapy, and legalization is discussed in some countries. Thus, it is relevant to study the effects of psychedelic compounds not only on experience, but also on behavioral performance.MethodsSeven healthy participants performed a motor response inhibition task before, during, and after sub-anesthetic doses of intravenously administered ketamine. The infusion rate was individually adjusted to produce noticeable subjective psychedelic effects.ResultsWe observed no statistically significant impact of sub-anesthetic ketamine on reaction times, omission errors, or post error slowing, relative to the preceding drug-free condition. However, we did observe significant correlations between performance impairment and self-reported, subjective altered states of consciousness, specifically experience of “anxiety” and “complex imagery.”ConclusionsConsidering the limited number of participants and large variation in strength of self-reported experiences, further studies with wider ranges of ketamine doses and behavioral tasks are needed to determine the presence and strength of potential behavioral effects.


2011 ◽  
Vol 106 (4) ◽  
pp. 2000-2011 ◽  
Author(s):  
Luis C. Populin ◽  
Abigail Z. Rajala

We have studied eye-head coordination in nonhuman primates with acoustic targets after finding that they are unable to make accurate saccadic eye movements to targets of this type with the head restrained. Three male macaque monkeys with experience in localizing sounds for rewards by pointing their gaze to the perceived location of sources served as subjects. Visual targets were used as controls. The experimental sessions were configured to minimize the chances that the subject would be able to predict the modality of the target as well as its location and time of presentation. The data show that eye and head movements are coordinated differently to generate gaze shifts to acoustic targets. Chiefly, the head invariably started to move before the eye and contributed more to the gaze shift. These differences were more striking for gaze shifts of <20–25° in amplitude, to which the head contributes very little or not at all when the target is visual. Thus acoustic and visual targets trigger gaze shifts with different eye-head coordination. This, coupled to the fact that anatomic evidence involves the superior colliculus as the link between auditory spatial processing and the motor system, suggests that separate signals are likely generated within this midbrain structure.


Perception ◽  
1994 ◽  
Vol 23 (1) ◽  
pp. 45-64 ◽  
Author(s):  
Monica Biscaldi ◽  
Burkhart Fischer ◽  
Franz Aiple

Twenty-four children made saccades in five noncognitive tasks. Two standard tasks required saccades to a single target presented randomly 4 deg to the right or left of a fixation point. Three other tasks required sequential saccades from the left to the right. 75 parameters of the eye-movement data were collected for each child. On the basis of their reading, writing, and other cognitive performances, twelve children were considered dyslexic and were divided into two groups (D1 and D2). Group statistical comparisons revealed significant differences between control and dyslexic subjects. In general, in the standard tasks the dyslexic subjects had poorer fixation quality, failed more often to hit the target at once, had smaller primary saccades, and had shorter reaction times to the left as compared with the control group. The control group and group D1 dyslexics showed an asymmetrical distribution of reaction times, but in opposite directions. Group D2 dyslexics made more anticipatory and express saccades, they undershot the target more often in comparison with the control group, and almost never overshot it. In the sequential tasks group D1 subjects made fewer and larger saccades in a shorter time and group D2 subjects had shorter fixation durations than the subjects of the control group.


Sign in / Sign up

Export Citation Format

Share Document