scholarly journals Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations

2018 ◽  
Vol 115 (45) ◽  
pp. E10634-E10641 ◽  
Author(s):  
Yan-Bo Sun ◽  
Ting-Ting Fu ◽  
Jie-Qiong Jin ◽  
Robert W. Murphy ◽  
David M. Hillis ◽  
...  

Although many cases of genetic adaptations to high elevations have been reported, the processes driving these modifications and the pace of their evolution remain unclear. Many high-elevation adaptations (HEAs) are thought to have arisen in situ as populations rose with growing mountains. In contrast, most high-elevation lineages of the Qinghai-Tibetan Plateau appear to have colonized from low-elevation areas. These lineages provide an opportunity for studying recent HEAs and comparing them with ancestral low-elevation alternatives. Herein, we compare four frogs (three species ofNanoranaand a close lowland relative) and four lizards (Phrynocephalus) that inhabit a range of elevations on or along the slopes of the Qinghai-Tibetan Plateau. The sequential cladogenesis of these species across an elevational gradient allows us to examine the gradual accumulation of HEA at increasing elevations. Many adaptations to high elevations appear to arise gradually and evolve continuously with increasing elevational distributions. Numerous related functions, especially DNA repair and energy metabolism pathways, exhibit rapid change and continuous positive selection with increasing elevations. Although the two studied genera are distantly related, they exhibit numerous convergent evolutionary changes, especially at the functional level. This functional convergence appears to be more extensive than convergence at the individual gene level, although we found 32 homologous genes undergoing positive selection for change in both high-elevation groups. We argue that species groups distributed along a broad elevational gradient provide a more powerful system for testing adaptations to high-elevation environments compared with studies that compare only pairs of high-elevation versus low-elevation species.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin U. Grüebler ◽  
Johann von Hirschheydt ◽  
Fränzi Korner-Nievergelt

AbstractThe formation of an upper distributional range limit for species breeding along mountain slopes is often based on environmental gradients resulting in changing demographic rates towards high elevations. However, we still lack an empirical understanding of how the interplay of demographic parameters forms the upper range limit in highly mobile species. Here, we study apparent survival and within-study area dispersal over a 700 m elevational gradient in barn swallows (Hirundo rustica) by using 15 years of capture-mark-recapture data. Annual apparent survival of adult breeding birds decreased while breeding dispersal probability of adult females, but not males increased towards the upper range limit. Individuals at high elevations dispersed to farms situated at elevations lower than would be expected by random dispersal. These results suggest higher turn-over rates of breeding individuals at high elevations, an elevational increase in immigration and thus, within-population source-sink dynamics between low and high elevations. The formation of the upper range limit therefore is based on preference for low-elevation breeding sites and immigration to high elevations. Thus, shifts of the upper range limit are not only affected by changes in the quality of high-elevation habitats but also by factors affecting the number of immigrants produced at low elevations.


2021 ◽  
Author(s):  
Martin Grüebler ◽  
Johann von Hirschheydt ◽  
Fränzi Korner-Nievergelt

Abstract The formation of the upper distributional range limit of species at mountain slopes is often based on environmental gradients resulting in changing demographic rates towards high elevations. However, we still lack an empiric understanding of how the interplay of demographic parameters forms the upper range limit in highly mobile species. Here, we study apparent survival and within-study area dispersal over a 700 m elevational gradient in barn swallows (Hirundo rustica) by using 15 years of capture-mark-recapture data. Annual apparent survival of adult breeding birds decreased while breeding dispersal probability of adult females, but not males increased towards the upper range limit. Individuals at high elevations dispersed to farms situated at lower elevations than would be expected by random dispersal. These results suggest higher turn-over rates of breeding individuals at high elevations, an elevational increase in immigration and thus, within-population source-sink dynamics between low and high elevations. The formation of the upper range limit therefore is based on preference for low-elevation breeding sites and immigration to high elevations. Thus, shifts of the upper range limit are not only affected by changes in the quality of high-elevation habitats but also by factors affecting the number of immigrants produced at low elevations.


2021 ◽  
Vol 24 ◽  
pp. 178-196
Author(s):  
G. Stefani-Santos ◽  
W.F. Ávila Jr ◽  
M.A. Clemente ◽  
N.R. Henriques ◽  
A.S.B. Souza ◽  
...  

Despite the important role of the order Odonata in ecosystems, there is a lack of information about dragonfly communities in several regions, high elevation sites, and environmentally protected areas in Minas Gerais State, Brazil. Our objective was to assess the abundance and richness of dragonfly and damselfly communities along an elevational gradient in the Atlantic Forest,southeastern Brazil. This study was conducted in the Fernão Dias Environmental Protection Area,Mantiqueira Mountain region, Gonçalves, Minas Gerais State, in sites covered by Seasonal Semideciduous and mixed forests. This is the first study of Odonata communities in the region. Samplings were carried out on 17 days from October 2019 to March 2020 at three elevation ranges (low,mid, and high). A total of 293 specimens, distributed in 39 species and 9 families, were sampled. Elevation did not influence the richness or abundance of dragonflies but altered community composition. Some species were found to be exclusive to high-elevation sites, such as Heteragrion mantiqueirae Machado, 2006, which was recorded for the first time in Minas Gerais and we provide a description and diagnosis of the single female collected in tandem. A novel species of the genus Brechmorhoga was found to occur at mid and high elevations. The composition of dragonfly communities depends on the degree of preservation and extension of forest areas. Therefore, conservation of forests in Gonçalves is crucial for preserving Odonata diversity in Minas Gerais State.


2016 ◽  
Vol 283 (1843) ◽  
pp. 20162201 ◽  
Author(s):  
S. Barve ◽  
A. A. Dhondt ◽  
V. B. Mathur ◽  
Z. A. Cheviron

Hypobaric hypoxia at high elevation represents an important physiological stressor for montane organisms, but optimal physiological strategies to cope with hypoxia may vary among species with different life histories. Montane birds exhibit a range of migration patterns; elevational migrants breed at high elevations but winter at low elevations or migrate further south, while high-elevation residents inhabit the same elevation throughout the year. Optimal physiological strategies to cope with hypoxia might therefore differ between species that exhibit these two migratory patterns, because they differ in the amount time spent at high elevation. We examined physiological parameters associated with blood-oxygen transport (haemoglobin concentration and haematocrit, i.e. the proportion of red blood cells in blood) in nine species of elevational migrants and six species of high-elevation residents that were sampled along a 2200 m (1000–3200 m) elevational gradient. Haemoglobin concentration increased with elevation within species regardless of migratory strategy, but it was only significantly correlated with haematocrit in elevational migrants. Surprisingly, haemoglobin concentration was not correlated with haematocrit in high-elevation residents, and these species exhibited higher mean cellular haemoglobin concentration than elevational migrants. Thus, alternative physiological strategies to regulate haemoglobin concentration and blood O 2 carrying capacity appear to differ among birds with different annual elevational movement patterns.


2006 ◽  
Vol 84 (12) ◽  
pp. 1789-1795 ◽  
Author(s):  
Xin Lu ◽  
Bin Li ◽  
Juan Juan Liang

Rana chensinensis (David, 1875) is a temperate anuran endemic to northern China. We examined differences in demographic traits of the populations from three elevations (1400, 1700, and 2000 m) along a montane river in 2002. We found that frogs from higher elevations had delayed maturity, a larger size at maturity, and slower growth rates compared with frogs at lower elevations. This life-history model is similar to observations of other amphibians living in montane areas. However, discordance with the expected model occurred between neighboring populations and the variation was sex-specific. Mid-elevation adult males were significantly older and larger than their low-elevation congeners, but they were statistically similar in age and size to frogs from high elevations; females from mid elevations were not statistically different in age and size from females from our low-elevation site, but they were significantly younger and smaller than high-elevation females. These variations may be related to sexual differences in life-history strategies, which might not covary systematically when elevational gradients are set at a finer scale. At each elevation, the sex ratio was skewed towards females; females also matured later, lived longer, and were larger. Age was a major factor related to size, but other factors played a role in shaping size differences both between populations and between sexes.


2016 ◽  
Author(s):  
C Steven Sevillano-Rios ◽  
Amanda D. Rodewald

Background. As one of the highest and most unique systems in the world, Polylepis forests are recognized both as center of endemism and diversity along the Andes and as a system under serious threat from human activities, fragmentation, and climate change. Effective conservation efforts are limited, in part, by our poor understanding of the habitat needs of the system’s flora and fauna. Methods. In 2014-2015, we studied bird communities and 19 associated local and landscape attributes within five forested glacial valleys within the Cordillera Blanca and Huascaran National Park, Peru. Birds were surveyed in dry (May-August) and wet (January-April) seasons at 130 points distributed along an elevational gradient (3,300-4,700 masl) and analyzed using Canonical Correspondence Analysis (CCA). Results. A total of 50 species of birds, including 13 species of high conservation concern, were associated with four basic habitat types: (1) Polylepis sericea forests at low elevations, (2) P. weberbaueri forests at high elevations, (3) Puna grassland and (4) shrublands. Four species of conservation priority (e.g., Poospiza alticola) were strongly associated with large forest patches (~10-ha) dominated by P. sericea at lower elevations (<3,800 masl), whereas another four (e.g., Anairetes alpinus) were associated with less disturbed forests of P. weberbaueri at upper elevations (>4,200 masl). Discussion. Results suggest that, in addition to conserving large (>10-ha) P. sericea forests at lower elevations as the cornerstone for maintaining bird diversity, any high elevation (>4,200 masl) relicts of P. weberbaueri, irrespective of size, should be prioritized for conservation.


2016 ◽  
Author(s):  
C Steven Sevillano-Rios ◽  
Amanda D. Rodewald

Background. As one of the highest and most unique systems in the world, Polylepis forests are recognized both as center of endemism and diversity along the Andes and as a system under serious threat from human activities, fragmentation, and climate change. Effective conservation efforts are limited, in part, by our poor understanding of the habitat needs of the system’s flora and fauna. Methods. In 2014-2015, we studied bird communities and 19 associated local and landscape attributes within five forested glacial valleys within the Cordillera Blanca and Huascaran National Park, Peru. Birds were surveyed in dry (May-August) and wet (January-April) seasons at 130 points distributed along an elevational gradient (3,300-4,700 masl) and analyzed using Canonical Correspondence Analysis (CCA). Results. A total of 50 species of birds, including 13 species of high conservation concern, were associated with four basic habitat types: (1) Polylepis sericea forests at low elevations, (2) P. weberbaueri forests at high elevations, (3) Puna grassland and (4) shrublands. Four species of conservation priority (e.g., Poospiza alticola) were strongly associated with large forest patches (~10-ha) dominated by P. sericea at lower elevations (<3,800 masl), whereas another four (e.g., Anairetes alpinus) were associated with less disturbed forests of P. weberbaueri at upper elevations (>4,200 masl). Discussion. Results suggest that, in addition to conserving large (>10-ha) P. sericea forests at lower elevations as the cornerstone for maintaining bird diversity, any high elevation (>4,200 masl) relicts of P. weberbaueri, irrespective of size, should be prioritized for conservation.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 236 ◽  
Author(s):  
Gregorio Moreno-Rueda ◽  
Laureano G. González-Granda ◽  
Senda Reguera ◽  
Francisco J. Zamora-Camacho ◽  
Elena Melero

Predation usually selects for visual crypsis, the colour matching between an animal and its background. Geographic co-variation between animal and background colourations is well known, but how crypsis varies along elevational gradients remains unknown. We predict that dorsal colouration in the lizard Psammodromus algirus should covary with the colour of bare soil—where this lizard is mainly found—along a 2200 m elevational gradient in Sierra Nevada (SE Spain). Moreover, we predict that crypsis should decrease with elevation for two reasons: (1) Predation pressure typically decreases with elevation, and (2) at high elevation, dorsal colouration is under conflicting selection for both crypsis and thermoregulation. By means of standardised photographies of the substratum and colourimetric measurements of lizard dorsal skin, we tested the colour matching between lizard dorsum and background. We found that, along the gradient, lizard dorsal colouration covaried with the colouration of bare soil, but not with other background elements where the lizard is rarely detected. Moreover, supporting our prediction, the degree of crypsis against bare soil decreased with elevation. Hence, our findings suggest local adaptation for crypsis in this lizard along an elevational gradient, but this local adaptation would be hindered at high elevations.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 200
Author(s):  
Eric J. Gangloff ◽  
Sierra Spears ◽  
Laura Kouyoumdjian ◽  
Ciara Pettit ◽  
Fabien Aubret

Ectothermic animals living at high elevation often face interacting challenges, including temperature extremes, intense radiation, and hypoxia. While high-elevation specialists have developed strategies to withstand these constraints, the factors preventing downslope migration are not always well understood. As mean temperatures continue to rise and climate patterns become more extreme, such translocation may be a viable conservation strategy for some populations or species, yet the effects of novel conditions, such as relative hyperoxia, have not been well characterised. Our study examines the effect of downslope translocation on ectothermic thermal physiology and performance in Pyrenean rock lizards (Iberolacerta bonnali) from high elevation (2254 m above sea level). Specifically, we tested whether models of organismal performance developed from low-elevation species facing oxygen restriction (e.g., hierarchical mechanisms of thermal limitation hypothesis) can be applied to the opposite scenario, when high-elevation organisms face hyperoxia. Lizards were split into two treatment groups: one group was maintained at a high elevation (2877 m ASL) and the other group was transplanted to low elevation (432 m ASL). In support of hyperoxia representing a constraint, we found that lizards transplanted to the novel oxygen environment of low elevation exhibited decreased thermal preferences and that the thermal performance curve for sprint speed shifted, resulting in lower performance at high body temperatures. While the effects of hypoxia on thermal physiology are well-explored, few studies have examined the effects of hyperoxia in an ecological context. Our study suggests that high-elevation specialists may be hindered in such novel oxygen environments and thus constrained in their capacity for downslope migration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing He ◽  
Ping Chen ◽  
Sonia Zambrano ◽  
Dina Dabaghie ◽  
Yizhou Hu ◽  
...  

AbstractMolecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies.


Sign in / Sign up

Export Citation Format

Share Document