mural cell
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 49)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Michael Martin Orlich ◽  
Rodrigo Diéguez-Hurtado ◽  
Regine Muehlfriedel ◽  
Vithiyanjali Sothilingam ◽  
Hartwig Wolburg ◽  
...  

Rationale: Pericytes (PCs) and vascular smooth muscle cells (vSMCs), collectively known as mural cells(MCs), are recruited through PDGFB-PDGFRB signaling. MCs are essential for vascular integrity, and their loss has been associated with numerous diseases. Most of this knowledge is based on studies in which MCs are insufficiently recruited or fully absent upon inducible ablation. In contrast, little is known about the physiological consequences that result from impairment of specific MC functions. Objective: Here, we characterize the role of the transcription factor serum response factor (SRF) in MCs and study its function in developmental and pathological contexts. Methods and Results: We generated a mouse model of MC-specific inducible Srf gene deletion and studied its consequences during retinal angiogenesis. By postnatal day (P)6, PCs lacking SRF were morphologically abnormal and failed to properly co-migrate with angiogenic sprouts. As a consequence, PC-deficient vessels at the retinal sprouting front became dilated and leaky. By P12, also the vSMCs had lost SRF, which coincided with the formation of pathological arteriovenous (AV) shunts. Mechanistically, we show that PDGFB-dependent SRF activation is mediated via MRTF co-factors. We further show that MRTF-SRF signaling promotes pathological PC activation during ischemic retinopathy. RNA-sequencing, immunohistology, in vivo live imaging and in vitro experiments demonstrated that SRF regulates expression of contractile SMC proteins essential to maintain the vascular tone. Conclusions: SRF is crucial for distinct functions in PCs and vSMCs. SRF directs PC migration downstream of PDGFRB signaling and mediates pathological PC activation during ischemic retinopathy. In vSMCs, SRF is essential for expression of the contractile machinery, and its deletion triggers formation of AV shunts. These essential roles in physiological and pathological contexts provide a rational for novel therapeutic approaches through targeting SRF activity in MCs.


2021 ◽  
Author(s):  
Manuel E Cantu Gutierrez ◽  
Matthew C Hill ◽  
Gabrielle Largoza ◽  
James F Martin ◽  
Joshua Wythe

Significant phenotypic differences exist between the vascular endothelium of different organs, including cell-cell junctions, paracellular fluid transport, shape, and mural cell coverage. These organ-specific morphological features ultimately manifest as different functional capacities, as demonstrated by the dramatic differences in capillary permeability between the leaky vessels of the liver compared to the almost impermeable vasculature found in the brain. While these morphological and functional differences have been long appreciated, the molecular basis of endothelial organ specialization remains unclear. To determine the epigenetic and transcriptional mechanisms driving this functional heterogeneity, we profiled accessible chromatin, as well as gene expression, in six different organs, across three distinct time points, during murine development and in adulthood. After identifying both common, and organ-specific DNA motif usage and transcriptional signatures, we then focused our studies on the endothelium of the central nervous system. Using single cell RNA-seq, we identified key gene regulatory networks governing brain blood vessel maturation, including TCF/LEF and FOX transcription factors. Critically, these unique regulatory regions and gene expression signatures are evolutionarily conserved in humans. Collectively, this work provides a valuable resource for identifying the transcriptional regulators controlling organ-specific endothelial specialization and provides novel insight into the gene regulatory networks governing the maturation and maintenance of the cerebrovasculature.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1041
Author(s):  
Koji Ando ◽  
Tomohiro Ishii ◽  
Shigetomo Fukuhara

Recruitment of mural cells to the vascular wall is essential for forming the vasculature as well as maintaining proper vascular functions. In recent years, zebrafish genetic tools for mural cell biology have improved substantially. Fluorescently labeled zebrafish mural cell reporter lines enable us to study, with higher spatiotemporal resolution than ever, the processes of mural cell development from their progenitors. Furthermore, recent phenotypic analysis of platelet-derived growth factor beta mutant zebrafish revealed well-conserved organotypic mural cell development and functions in vertebrates with the unique features of zebrafish. However, comprehensive reviews of zebrafish mural cells are lacking. Therefore, herein, we highlight recent advances in zebrafish mural cell tools. We also summarize the fundamental features of zebrafish mural cell development, especially at early stages, and functions.


2021 ◽  
Author(s):  
Govind Peringod ◽  
Linhui Yu ◽  
Kartikeya Murari ◽  
Grant R Gordon

Neural activity underlying sensation, movement or cognition drives regional blood flow enhancement (termed functional hyperemia) to increase the oxygen supply to respiring cells for as long as needed to meet energy demands. However, functional hyperemia is often studied under anesthesia which typically yields response profiles that appear temporally and spatially homogenous. We have insufficient understanding of the underlying kinetics of oxygen delivery in awake animals, especially during specific behaviours that may influence neurally-driven enhancements in cerebral blood flow. Using widefield intrinsic optical signal imaging in awake, head-fixed but active mice, we demonstrated distinct early and late components to changes in intravascular oxygenation in response to sustained (30s) whisker stimulation. We found that the late component (20-30s), but not the early component (1-5s), was strongly influenced by level of whisking/locomotion in the region of highest response and in surrounding regions. Optical flow analyses revealed complex yet stereotyped spatial properties of the early and late components that were related to location within the optical window and the initial state of the cerebral vasculature. In attempt to control these complex response characteristics, we drove a canonical microvasculature constriction pathway using mural cell Gq-chemogenetic mice. A low-dose of systemic C21 strongly limited both the magnitude and spatial extent of the sensory-evoked hemodynamic response, showing that functional hyperemia can be severely limited by direct mural cell activation. These data provide new insights into the cerebral microcirculation in the awake state and may have implications for interpreting functional imaging data.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Linda Alex ◽  
Kai Su ◽  
Izabela Tuleta ◽  
Nikolaos G Frangogiannis

Infarct healing is dependent on recruitment of inflammatory leukocytes and subsequent activation of myofibroblasts (MF) and neovessel formation, ultimately resulting in formation of a highly vascularized collagen-enriched scar. Though the heart has an abundant population of periendothelial pericytes, its role in wound healing upon myocardial infarction (MI) has not been studied. We hypothesized that in the infarcted myocardium, pericytes may become activated, contributing to inflammatory, fibrotic and angiogenic responses. We used pericyte/fibroblast reporter mice (NG2 DsRed ;PDGFRα GFP ), lineage tracing studies and in vitro approaches to study the fate and role of pericytes in the infarcted myocardium. In normal hearts, NG2+/PDGFRα- pericytes and PDGFRα+/NG2- fibroblasts had distinct transcriptomic profiles. Pericytes expressed mural genes like Acta2 , Pdgfrb and low amounts of extracellular matrix (ECM) genes, whereas fibroblasts synthesized collagens, Timp2/3 and matricellular genes. 7 days post-MI, expansion of the NG2+ population in the infarct zone was associated with emergence of non-mural NG2+/αSMA+ cells with MF characteristics. FACS-sorted NG2+/PDGFRα- cells from 7-day infarcts expressed higher levels of collagens when compared to NG2+/PDGFRα- cells from normal hearts. Infarct pericytes had high integrin and MMP14 expression, reflecting an activated migratory phenotype. Lineage tracing using NG2CreER TM ;Rosa tdTomato ;PDGFRα GFP mice showed that 5.7%±1.04 of PDGFRα+ fibroblasts and 10.49%±2.73 of infarct MFs were derived from NG2+ lineage. Pericyte-derived fibroblasts exhibited higher ECM gene synthesis, in comparison to fibroblasts from non-pericyte origin, while pericyte-derived mural cells showed accentuated inflammatory cytokine gene expression. Immunostaining showed pericytes actively contribute to vascular maturation, forming a mural cell coat enwrapping infarct neovessels. In vitro, TGFβ induced integrins, collagens and MMPs in human pericytes, similar to the changes observed in infarct pericytes. Taken together, our evidences show that after MI, pericytes become activated and contribute to repair by undergoing conversion to a subset of myofibroblasts and by coating infarct neovessels.


2021 ◽  
Author(s):  
Elise Courtois ◽  
Yuliana Tan ◽  
William Flynn ◽  
Santosh Sivajothi ◽  
Diane Luo ◽  
...  

Abstract Endometriosis is characterized by growth of endometrial-like tissue outside of the uterus affecting many women in their reproductive age, causing years of pelvic pain and potential infertility. Its pathophysiology remains largely unknown, limiting diagnosis and treatment. We characterized peritoneal and ovarian lesions at single-cell transcriptome resolution and compared to matched eutopic endometrium, control endometrium, and organoids derived from these tissues, generating data on over 100,000 cells across 12 individuals. We spatially localized many of the cell types using imaging mass cytometry. We identify a perivascular mural cell unique to the peritoneal lesions with dual roles in angiogenesis promotion and immune cell trafficking. We define an immunotolerant peritoneal niche, fundamental differences in eutopic endometrium and between lesions microenvironments, and a novel progenitor-like epithelial cell subpopulation. Altogether, this study provides a holistic view of the endometriosis microenvironment representing the first comprehensive cell atlas of the disease, essential information for advancing therapeutics and diagnostics.


2021 ◽  
Author(s):  
Yuliana Tan ◽  
William F Flynn ◽  
Santhosh Sivajothi ◽  
Diane Luo ◽  
Suleyman Bozal ◽  
...  

Endometriosis is characterized by growth of endometrial-like tissue outside of the uterus affecting many women in their reproductive age, causing years of pelvic pain and potential infertility. Its pathophysiology remains largely unknown, limiting diagnosis and treatment. We characterized peritoneal and ovarian lesions at single-cell transcriptome resolution and compared to matched eutopic endometrium, control endometrium, and organoids derived from these tissues, generating data on over 100,000 cells across 12 individuals. We spatially localized many of the cell types using imaging mass cytometry. We identify a perivascular mural cell unique to the peritoneal lesions with dual roles in angiogenesis promotion and immune cell trafficking. We define an immunotolerant peritoneal niche, fundamental differences in eutopic endometrium and between lesions microenvironments, and a novel progenitor-like epithelial cell subpopulation. Altogether, this study provides a holistic view of the endometriosis microenvironment representing the first comprehensive cell atlas of the disease, essential information for advancing therapeutics and diagnostics.


Author(s):  
Koji Ando ◽  
Yu-Huan Shih ◽  
Lwaki Ebarasi ◽  
Ann Grosse ◽  
Daneal Portman ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252342
Author(s):  
Michael J. Schonning ◽  
Seung Koh ◽  
Ravi W. Sun ◽  
Gresham T. Richter ◽  
Andrew K. Edwards ◽  
...  

Venous malformations (VMs) are slow-flow malformations of the venous vasculature and are the most common type of vascular malformation with a prevalence of 1%. Germline and somatic mutations have been shown to contribute to VM pathogenesis, but how these mutations affect VM pathobiology is not well understood. The goal of this study was to characterize VM endothelial and mural cell expression by performing a comprehensive expression analysis of VM vasculature. VM specimens (n = 16) were stained for pan-endothelial, arterial, venous, and endothelial progenitor cell proteins; proliferation was assessed with KI67. Endothelial cells in the VM vessels were abnormally orientated and improperly specified, as seen by the misexpression of both arterial and endothelial cell progenitor proteins not observed in control vessels. Consistent with arterialization of the endothelial cells, VM vessels were often surrounded by multiple layers of disorganized mural cells. VM endothelium also had a significant increase in proliferative endothelial cells, which may contribute to the dilated channels seen in VMs. Together the expression analysis indicates that the VM endothelium is misspecified and hyperproliferative, suggesting that VMs are biologically active lesions, consistent with clinical observations of VM progression over time.


Sign in / Sign up

Export Citation Format

Share Document