scholarly journals Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites

2018 ◽  
Vol 115 (48) ◽  
pp. 12124-12129 ◽  
Author(s):  
Benjamin E. R. Snyder ◽  
Max L. Bols ◽  
Hannah M. Rhoda ◽  
Pieter Vanelderen ◽  
Lars H. Böttger ◽  
...  

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.

2021 ◽  
Author(s):  
Prajay Patel ◽  
Robert Wells ◽  
David Kaphan ◽  
Massimiliano Delferro ◽  
Rex T. Skodje ◽  
...  

<div> <div> <p></p><p><a>A crucial consideration for supported heterogeneous catalysts is the non-uniformity of the active sites, particularly for Supported Organometallic Catalysts (SOMCs). Standard spectroscopic techniques, such as X-ray absorption spectroscopy (XAS), reflect the nature of the most populated sites, which are often intrinsically structurally distinct from the most catalytically active sites. With computational models, often only a few representative structures are used to depict catalytic active sites on a surface, even though there are numerous observable factors of surface heterogeneity that contribute to the kinetically favorable active species. A previously reported study on the mechanism of a surface organovanadium(III) catalyst [(SiO)V<sup>III</sup>(Mes)(THF)] for styrene hydrogenation yielded two possible mechanisms: heterolytic cleavage and redox cycling. These two mechanistic scenarios are challenging to differentiate experimentally based on the kinetic readouts of the catalyst are identical. To showcase the importance of modeling surface heterogeneity and its effect on catalytic activity, density functional theory (DFT) computational models of a series of potential active sites of [(SiO)V<sup>III</sup>(Mes)(THF)] for the reaction pathways are applied in combination with kinetic Monte Carlo (kMC) simulations. Computed results were t then compared to the previously reported experimental kinetic study</a><a>.: 1) DFT free energy reaction pathways indicated the likely active site and pathway for styrene hydrogenation; a heterolytic cleavage pathway requiring a bare tripodal vanadium site. 2) From the kMC simulations, a mixture of the different bond lengths from the support oxygen to the metal center was required to qualitatively describe the experimentally observed kinetic aspects of a supported organovanadium(III) catalyst for olefin hydrogenation. </a>This work underscores the importance of modeling surface heterogeneity in computational catalysis.</p><p></p></div></div>


2021 ◽  
Author(s):  
Prajay Patel ◽  
Robert Wells ◽  
David Kaphan ◽  
Massimiliano Delferro ◽  
Rex T. Skodje ◽  
...  

<div> <div> <p></p><p><a>A crucial consideration for supported heterogeneous catalysts is the non-uniformity of the active sites, particularly for Supported Organometallic Catalysts (SOMCs). Standard spectroscopic techniques, such as X-ray absorption spectroscopy (XAS), reflect the nature of the most populated sites, which are often intrinsically structurally distinct from the most catalytically active sites. With computational models, often only a few representative structures are used to depict catalytic active sites on a surface, even though there are numerous observable factors of surface heterogeneity that contribute to the kinetically favorable active species. A previously reported study on the mechanism of a surface organovanadium(III) catalyst [(SiO)V<sup>III</sup>(Mes)(THF)] for styrene hydrogenation yielded two possible mechanisms: heterolytic cleavage and redox cycling. These two mechanistic scenarios are challenging to differentiate experimentally based on the kinetic readouts of the catalyst are identical. To showcase the importance of modeling surface heterogeneity and its effect on catalytic activity, density functional theory (DFT) computational models of a series of potential active sites of [(SiO)V<sup>III</sup>(Mes)(THF)] for the reaction pathways are applied in combination with kinetic Monte Carlo (kMC) simulations. Computed results were t then compared to the previously reported experimental kinetic study</a><a>.: 1) DFT free energy reaction pathways indicated the likely active site and pathway for styrene hydrogenation; a heterolytic cleavage pathway requiring a bare tripodal vanadium site. 2) From the kMC simulations, a mixture of the different bond lengths from the support oxygen to the metal center was required to qualitatively describe the experimentally observed kinetic aspects of a supported organovanadium(III) catalyst for olefin hydrogenation. </a>This work underscores the importance of modeling surface heterogeneity in computational catalysis.</p><p></p></div></div>


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chuanqiang Wu ◽  
Shiqing Ding ◽  
Daobin Liu ◽  
Dongdong Li ◽  
Shuangming Chen ◽  
...  

Numerous experiments have demonstrated that the metal atom is the active center of monoatomic catalysts for hydrogen evolution reaction (HER), while the active sites of nonmetal doped atoms are often neglected. By combining theoretical prediction and experimental verification, we designed a unique ternary Ru-N4-P coordination structure constructed by monodispersed Ru atoms supported on N,P dual-doped graphene for highly efficient hydrogen evolution in acid solution. The density functional theory calculations indicate that the charge polarization will lead to the most charge accumulation at P atoms, which results in a distinct nonmetallic P active sites with the moderate H∗ adsorption energy. Notably, these P atoms mainly supply highly efficient catalytic sites with ultrasmall absorption energy of 0.007 eV. Correspondingly, the Ru-N4-P demonstrated outstanding HER performance not only in an acidic condition but also in alkaline environment. Notably, the performance of Ru-NPC catalyst at high current is even superior to the commercial Pt/C catalysts, whether in acidic or alkaline medium. Our in situ synchrotron radiation infrared spectra demonstrate that a P-Hads intermediate is continually emerging on the Ru-NPC catalyst, actively proving the nonmetallic P catalytically active site in HER that is very different with previously reported metallic sites.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guangfu Qian ◽  
Jinli Chen ◽  
Tianqi Yu ◽  
Jiacheng Liu ◽  
Lin Luo ◽  
...  

AbstractConstructing heterojunction is an effective strategy to develop high-performance non-precious-metal-based catalysts for electrochemical water splitting (WS). Herein, we design and prepare an N-doped-carbon-encapsulated Ni/MoO2 nano-needle with three-phase heterojunction (Ni/MoO2@CN) for accelerating the WS under industrial alkaline condition. Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface, which optimizes the adsorption energy of H- and O-containing intermediates to obtain the best ΔGH* for hydrogen evolution reaction (HER) and decrease the ΔG value of rate-determining step for oxygen evolution reaction (OER), thus enhancing the HER/OER catalytic activity. Electrochemical results confirm that Ni/MoO2@CN exhibits good activity for HER (ƞ-10 = 33 mV, ƞ-1000 = 267 mV) and OER (ƞ10 = 250 mV, ƞ1000 = 420 mV). It shows a low potential of 1.86 V at 1000 mA cm−2 for WS in 6.0 M KOH solution at 60 °C and can steadily operate for 330 h. This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites, faster mass diffusion, and bubbles release. This work provides a unique idea for designing high efficiency catalytic materials for WS.


2014 ◽  
Vol 21 (01) ◽  
pp. 1450018 ◽  
Author(s):  
PING HE ◽  
JIANG WU ◽  
XIUMIN JIANG ◽  
WEIGUO PAN ◽  
JIANXING REN

Density functional theory calculations are performed to provide a molecular-level understanding of the mechanism of mercury adsorption on sulfuric acid-impregnated carbonaceous surface. The carbonaceous surface is modeled by a nine-fused benzene ring in which its edge carbon atoms on the upper side are unsaturated to simulate the active sites for reaction. SO 4 clusters with and without charge are examined to act as the representative species to model the sulfuric acid absorbed on the carbonaceous surface. All of the possible approaches of SO 4 clusters with and without charge on the carbonaceous surface are conduced to study their effects on mercury adsorption. The results suggest that sulfuric acid effect on the mercury adsorption capacity of the carbonaceous surface is very complicated, and it depends on a combination of concentration and charge of SO 4 cluster. SO 4 cluster presents a positive effect on mercury adsorption on the carbonaceous surface, but higher concentration of SO 4 cluster decreases the adsorption capacity of the carbonaceous surface for mercury removal because there is considerable competition for active sites between Hg and SO 4 cluster. Since all of the possible approaches of mercury on the carbonaceous surface with [Formula: see text] cluster, excluding one that mercury is adsorbed at bridge active site, can lead to the decrease in the adsorption energies of mercury on the carbonaceous surface, [Formula: see text] cluster presents a negative effect on the capacity of the carbonaceous surface for mercury adsorption regardless of the concentration of [Formula: see text] cluster. The results also indicate that SO 2 cluster and surface oxygen complex can be formed from SO 4 cluster with or without charge if mercury is adsorbed at bridge active site, which facilitates the mercury removal for the carbonaceous surface.


2021 ◽  
Author(s):  
Prajay Patel ◽  
Robert Wells ◽  
David Kaphan ◽  
Massimiliano Delferro ◽  
Rex T. Skodje ◽  
...  

<div> <div> <p></p><p><a>A crucial consideration for supported heterogeneous catalysts is the non-uniformity of the active sites, particularly for Supported Organometallic Catalysts (SOMCs). Standard spectroscopic techniques, such as X-ray absorption spectroscopy (XAS), reflect the nature of the most populated sites, which are often intrinsically structurally distinct from the most catalytically active sites. With computational models, often only a few representative structures are used to depict catalytic active sites on a surface, even though there are numerous observable factors of surface heterogeneity that contribute to the kinetically favorable active species. A previously reported study on the mechanism of a surface organovanadium(III) catalyst [(SiO)V<sup>III</sup>(Mes)(THF)] for styrene hydrogenation yielded two possible mechanisms: heterolytic cleavage and redox cycling. These two mechanistic scenarios are challenging to differentiate experimentally based on the kinetic readouts of the catalyst are identical. To showcase the importance of modeling surface heterogeneity and its effect on catalytic activity, density functional theory (DFT) computational models of a series of potential active sites of [(SiO)V<sup>III</sup>(Mes)(THF)] for the reaction pathways are applied in combination with kinetic Monte Carlo (kMC) simulations. Computed results were t then compared to the previously reported experimental kinetic study</a><a>.: 1) DFT free energy reaction pathways indicated the likely active site and pathway for styrene hydrogenation; a heterolytic cleavage pathway requiring a bare tripodal vanadium site. 2) From the kMC simulations, a mixture of the different bond lengths from the support oxygen to the metal center was required to qualitatively describe the experimentally observed kinetic aspects of a supported organovanadium(III) catalyst for olefin hydrogenation. </a>This work underscores the importance of modeling surface heterogeneity in computational catalysis.</p><p></p></div></div>


2019 ◽  
Author(s):  
Yan Wang ◽  
Sagar Udyavara ◽  
Matthew Neurock ◽  
C. Daniel Frisbie

<div> <div> <div> <p> </p><div> <div> <div> <p>Electrocatalytic activity for hydrogen evolution at monolayer MoS2 electrodes can be enhanced by the application of an electric field normal to the electrode plane. The electric field is produced by a gate electrode lying underneath the MoS2 and separated from it by a dielectric. Application of a voltage to the back-side gate electrode while sweeping the MoS2 electrochemical potential in a conventional manner in 0.5 M H2SO4 results in up to a 140-mV reduction in overpotential for hydrogen evolution at current densities of 50 mA/cm2. Tafel analysis indicates that the exchange current density is correspondingly improved by a factor of 4 to 0.1 mA/cm2 as gate voltage is increased. Density functional theory calculations support a mechanism in which the higher hydrogen evolution activity is caused by gate-induced electronic charge on Mo metal centers adjacent the S vacancies (the active sites), leading to enhanced Mo-H bond strengths. Overall, our findings indicate that the back-gated working electrode architecture is a convenient and versatile platform for investigating the connection between tunable electronic charge at active sites and overpotential for electrocatalytic processes on ultrathin electrode materials.</p></div></div></div><br><p></p></div></div></div>


2019 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

<div> <div> <div> <div><p>Developing active and stable oxygen evolution catalysts is a key to enabling various future energy technologies and the state-of-the-art catalyst is Ir-containing oxide materials. Understanding oxygen chemistry on oxide materials is significantly more complicated than studying transition metal catalysts for two reasons: the most stable surface coverage under reaction conditions is extremely important but difficult to understand without many detailed calculations, and there are many possible active sites and configurations on O* or OH* covered surfaces. We have developed an automated and high-throughput approach to solve this problem and predict OER overpotentials for arbitrary oxide surfaces. We demonstrate this for a number of previously-unstudied IrO2 and IrO3 polymorphs and their facets. We discovered that low index surfaces of IrO2 other than rutile (110) are more active than the most stable rutile (110), and we identified promising active sites of IrO2 and IrO3 that outperform rutile (110) by 0.2 V in theoretical overpotential. Based on findings from DFT calculations, we pro- vide catalyst design strategies to improve catalytic activity of Ir based catalysts and demonstrate a machine learning model capable of predicting surface coverages and site activity. This work highlights the importance of investigating unexplored chemical space to design promising catalysts.<br></p></div></div></div></div><div><div><div> </div> </div> </div>


Nanophotonics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1741-1751
Author(s):  
Young In Jhon ◽  
Jinho Lee ◽  
Young Min Jhon ◽  
Ju Han Lee

Abstract Metallic 2D materials can be promising saturable absorbers for ultrashort pulsed laser production in the long wavelength regime. However, preparing and manipulating their 2D structures without layer stacking have been nontrivial. Using a combined experimental and theoretical approach, we demonstrate here that a metallic titanium carbide (Ti3C2Tx), the most popular MXene 2D material, can have excellent nonlinear saturable absorption properties even in a highly stacked state due to its intrinsically existing surface termination, and thus can produce mode-locked femtosecond pulsed lasers in the 1.9-μm infrared range. Density functional theory calculations reveal that the electronic and optical properties of Ti3C2Tx MXene can be well preserved against significant layer stacking. Indeed, it is experimentally shown that 1.914-μm femtosecond pulsed lasers with a duration of 897 fs are readily generated within a fiber cavity using hundreds-of-layer stacked Ti3C2Tx MXene saturable absorbers, not only being much easier to manufacture than mono- or few-layered ones, but also offering character-conserved tightly-assembled 2D materials for advanced performance. This work strongly suggests that as-obtained highly stacked Ti3C2Tx MXenes can serve as superb material platforms for versatile nanophotonic applications, paving the way toward cost-effective, high-performance photonic devices based on MXenes.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


Sign in / Sign up

Export Citation Format

Share Document