scholarly journals A cell topography-based mechanism for ligand discrimination by the T cell receptor

2019 ◽  
Vol 116 (28) ◽  
pp. 14002-14010 ◽  
Author(s):  
Ricardo A. Fernandes ◽  
Kristina A. Ganzinger ◽  
Justin C. Tzou ◽  
Peter Jönsson ◽  
Steven F. Lee ◽  
...  

The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes.

2017 ◽  
Author(s):  
Ricardo A. Fernandes ◽  
Kristina A. Ganzinger ◽  
Justin Tzou ◽  
Peter Jönsson ◽  
Steven F. Lee ◽  
...  

AbstractThe T-cell receptor (TCR) triggers the elimination of pathogens and tumors by T lymphocytes. In order for this to avoid damage to the host, the receptor has to discriminate between thousands of peptide ligands presented by each host cell. Exactly how the TCR does this is unknown. In resting T-cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over kinases expressed at the cell surface. When agonist peptides are presented to the TCR by major histocompatibility complex (MHC) proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering occurs, leading to TCR phosphorylation. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we develop and test a quantitative treatment of receptor triggering reliant only upon TCR dwell-time in phosphatase-depleted cell-cell contacts constrained in area by cell topography. Using the model and experimentally-derived parameters, we find that ligand discrimination is possible but that it depends crucially on individual contacts being 400 nm in diameter or smaller, i.e. the size generated by microvilli. The model not only correctly predicts the relative signaling potencies of known agonists and non-agonists, but achieves this in the absence of conventional, multi-step kinetic proof-reading. Our work provides a simple, quantitative and predictive molecular framework for understanding why TCR triggering is so selective and fast, and reveals that for some receptors, cell topography crucially influences signaling outcomes.Significance statementOne approach to testing biological theories is to determine if they are predictive. A simple, theoretical treatment of TCR triggering suggests that ligand discrimination by the receptor relies on just two physical principles: (1) the time TCRs spend in cell-cell contacts depleted of large tyrosine phosphatases; and (2) constraints on contact size imposed by T cells using finger-like protrusions to interrogate their targets. The theory not only allows agonistic and non-agonistic TCR ligands to be distinguished but predicts the relative signalling potencies of agonists with remarkable accuracy. This suggests that the theory captures the essential features of receptor triggering.


2016 ◽  
Author(s):  
Marcus J. Taylor ◽  
Kabir Husain ◽  
Zev J. Gartner ◽  
Satyajit Mayor ◽  
Ronald D. Vale

AbstractT cells mount an immune response by measuring the binding strength of its T cell receptor (TCR) for peptide-loaded MHCs (pMHC) on an antigen-presenting cell. How T cells convert the lifetime of the extracellular TCR-pMHC interaction into an intracellular signal remains unknown. Here, we developed a synthetic signaling system in which the extracellular domains of the TCR and pMHC were replaced with short hybridizing strands of DNA. Remarkably, T cells can discriminate between DNA ligands differing by a single base pair. Single molecule imaging reveals that signaling is initiated when single ligand-bound receptors are converted into clusters, a time-dependent process requiring ligands with longer bound times. A computation model reveals that receptor clustering serves a kinetic proofreading function, enabling ligands with longer bound times to have disproportionally greater signaling outputs. These results suggest that spatial reorganization of receptors plays an important role in ligand discrimination in T cell signaling.


2000 ◽  
Vol 149 (1) ◽  
pp. 181-194 ◽  
Author(s):  
Matthias Krause ◽  
Antonio S. Sechi ◽  
Marlies Konradt ◽  
David Monner ◽  
Frank B. Gertler ◽  
...  

T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76–associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3–coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.


2007 ◽  
Vol 81 (22) ◽  
pp. 12670-12674 ◽  
Author(s):  
Douglas A. Bazdar ◽  
Scott F. Sieg

ABSTRACT Proliferation responses of naïve CD4+ T cells to T-cell receptor and interleukin-7 (IL-7) stimulation were evaluated by using cells from human immunodeficiency virus-positive (HIV+) donors. IL-7 enhanced responses to T-cell receptor stimulation, and the magnitude of this enhancement was similar in cells from healthy controls and from HIV+ subjects. The overall response to T-cell receptor stimulation alone or in combination with IL-7, however, was diminished among viremic HIV+ donors and occurred independent of antigen-presenting cells. Frequencies of CD127+ cells were related to the magnitudes of proliferation enhancement that were mediated by IL-7. Thus, IL-7 enhances but does not fully restore the function of naïve CD4+ T cells from HIV-infected persons.


2007 ◽  
Vol 27 (11) ◽  
pp. 4070-4081 ◽  
Author(s):  
Gaël Ménasché ◽  
Stefanie Kliche ◽  
Emily J. H. Chen ◽  
Theresia E. B. Stradal ◽  
Burkhart Schraven ◽  
...  

ABSTRACT One outcome of T-cell receptor (TCR) signaling is increased affinity and avidity of integrins for their ligands. This occurs through a process known as inside-out signaling, which has been shown to require several molecular components including the adapter proteins ADAP (adhesion and degranulation-promoting adapter protein) and SKAP-55 (55-kDa src kinase-associated phosphoprotein) and the small GTPase Rap1. Herein, we provide evidence linking ADAP and SKAP-55 to RIAM, a recently described adapter protein that binds selectively to active Rap1. We identified RIAM as a key component linking the ADAP/SKAP-55 module to the small GTPase Rap1, facilitating TCR-mediated integrin activation. We show that RIAM constitutively interacts with SKAP-55 in both a heterologous transfection system and primary T cells and map the region essential for this interaction. Additionally, we find that the SKAP-55/RIAM complex is essential both for TCR-mediated adhesion and for efficient conjugate formation between T cells and antigen-presenting cells. Mechanistic studies revealed that the ADAP/SKAP-55 module relocalized RIAM and Rap1 to the plasma membrane following TCR activation to facilitate integrin activation. These results describe for the first time a link between ADAP/SKAP-55 and the Rap1/RIAM complex and provide a potential new mechanism for TCR-mediated integrin activation.


2017 ◽  
Vol 114 (46) ◽  
pp. 12190-12195 ◽  
Author(s):  
Rafal M. Pielak ◽  
Geoff P. O’Donoghue ◽  
Jenny J. Lin ◽  
Katherine N. Alfieri ◽  
Nicole C. Fay ◽  
...  

Antigen discrimination by T cells occurs at the junction between a T cell and an antigen-presenting cell. Juxtacrine binding between numerous adhesion, signaling, and costimulatory molecules defines both the topographical and lateral geometry of this cell–cell interface, within which T cell receptor (TCR) and peptide major histocompatibility complex (pMHC) interact. These physical constraints on receptor and ligand movement have significant potential to modulate their molecular binding properties. Here, we monitor individual ligand:receptor binding and unbinding events in space and time by single-molecule imaging in live primary T cells for a range of different pMHC ligands and surface densities. Direct observations of pMHC:TCR and CD80:CD28 binding events reveal that the in situ affinity of both pMHC and CD80 ligands for their respective receptors is modulated by the steady-state number of agonist pMHC:TCR interactions experienced by the cell. By resolving every single pMHC:TCR interaction it is evident that this cooperativity is accomplished by increasing the kinetic on-rate without altering the off-rate and has a component that is not spatially localized. Furthermore, positive cooperativity is observed under conditions where the T cell activation probability is low. This TCR-mediated feedback is a global effect on the intercellular junction. It is triggered by the first few individual pMHC:TCR binding events and effectively increases the efficiency of TCR scanning for antigen before the T cell is committed to activation.


2001 ◽  
Vol 194 (8) ◽  
pp. 1043-1052 ◽  
Author(s):  
Phillip D. Holler ◽  
Alice R. Lim ◽  
Bryan K. Cho ◽  
Laurie A. Rund ◽  
David M. Kranz

T cells are activated by binding of the T cell receptor (TCR) to a peptide-major histocompatibility complex (MHC) complex (pMHC) expressed on the surface of antigen presenting cells. Various models have predicted that activation is limited to a narrow window of affinities (or dissociation rates) for the TCR–pMHC interaction and that above or below this window, T cells will fail to undergo activation. However, to date there have not been TCRs with sufficiently high affinities in order to test this hypothesis. In this report we examined the activity of a CD8-negative T cell line transfected with a high affinity mutant TCR (KD = 10 nM) derived from cytotoxic T lymphocyte clone 2C by in vitro engineering. The results show that despite a 300-fold higher affinity and a 45-fold longer off-rate compared with the wild-type TCR, T cells that expressed the mutant TCRs were activated by peptide. In fact, activation could be detected at significantly lower peptide concentrations than with T cells that expressed the wild-type TCR. Furthermore, binding and functional analyses of a panel of peptide variants suggested that pMHC stability could account for apparent discrepancies between TCR affinity and T cell activity observed in several prior studies.


1997 ◽  
Vol 185 (4) ◽  
pp. 641-652 ◽  
Author(s):  
Zeling Cai ◽  
Hidehiro Kishimoto ◽  
Anders Brunmark ◽  
Michael R. Jackson ◽  
Per A. Peterson ◽  
...  

The requirements for inducing downregulation of α/β T cell receptor (TCR) molecules on naive major histocompatibility complex class I–restricted T cells was investigated with 2C TCR transgenic mice and defined peptides as antigen. Confirming previous results, activation of 2C T cells in response to specific peptides required CD8 expression on the responder cells and was heavily dependent upon costimulation provided by either B7-1 or ICAM-1 on antigen-presenting cells (APC). These stringent requirements did not apply to TCR downregulation. Thus, TCR downregulation seemed to depend solely on TCR/peptide/interaction and did not require either CD8 or B7-1 expression; ICAM-1 potentiated TCR downregulation, but only with limiting doses of peptides. TCR downregulation was most prominent with high affinity peptides and appeared to be neither obligatory nor sufficient for T cell activation. In marked contrast to T cell activation, TCR downregulation was resistant to various metabolic inhibitors. The biological significance of TCR downregulation is unclear, but could be a device for protecting T cells against excessive signaling.


Sign in / Sign up

Export Citation Format

Share Document