scholarly journals DGAT1 inhibits retinol-dependent regulatory T cell formation and mediates autoimmune encephalomyelitis

2019 ◽  
Vol 116 (8) ◽  
pp. 3126-3135 ◽  
Author(s):  
Kareem L. Graham ◽  
Bonnie J. Werner ◽  
Kimberly M. Moyer ◽  
Alycia K. Patton ◽  
Charles R. Krois ◽  
...  

The balance of effector versus regulatory T cells (Tregs) controls inflammation in numerous settings, including multiple sclerosis (MS). Here we show that memory phenotype CD4+ T cells infiltrating the central nervous system during experimental autoimmune encephalomyelitis (EAE), a widely studied animal model of MS, expressed high levels of mRNA for Dgat1 encoding diacylglycerol-O-acyltransferase-1 (DGAT1), an enzyme that catalyzes triglyceride synthesis and retinyl ester formation. DGAT1 inhibition or deficiency attenuated EAE, with associated enhanced Treg frequency; and encephalitogenic, DGAT1−/− in vitro-polarized Th17 cells were poor inducers of EAE in adoptive recipients. DGAT1 acyltransferase activity sequesters retinol in ester form, preventing synthesis of retinoic acid, a cofactor for Treg generation. In cultures with T cell-depleted lymphoid tissues, retinol enhanced Treg induction from DGAT1−/− but not from WT T cells. The WT Treg induction defect was reversed by DGAT1 inhibition. These results demonstrate that DGAT1 suppresses retinol-dependent Treg formation and suggest its potential as a therapeutic target for autoimmune inflammation.

1997 ◽  
Vol 3 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Anastas Pashov ◽  
Blanche Bellon ◽  
Srini V Kaveri ◽  
Michel D Kazatchkine

Pooled human polyspecific IgG preparations for intravenous use (IVIg) have been used in a number of antibody mediated autoimmune diseases and recently in some T cell mediated disorders including multiple sclerosis, birdshot retinopathy and rheumatoid arthritis. Furthermore, IVIg has been proven beneficial in the corresponding animal models, i.e. experimental autoimmune encephalomyelitis (EAE), experimental autoimmune uveoretinitis and adjuvant arthritis respectively. The exact mechanisms for IVIg adion in T cell mediated disorders are still poorly understood. There is evidence that IVIg treatment in vitro and in vivo decreases or changes the kinetics of the secretion by normal PBMC of a number of cytokines and anti-proliferative effect of IVIg on T cells in vitro and in vivo has also been reported. It remains unclear though to what extent the IVIg effects in T cell mediated autoimmunity are related only to non-specifc T cell suppression and whether it also reshapes the autoimmune T cell cytokine profile. In this study we demonstrate that IVIg protects against EAE and that this beneficial effed is associated with a decreased proli feration of T cells specific for the immunizing antigen. Moreover, we show that these antigen-specific cells produce low amount of Th /-type cytokines and transfer an attenuated EAE


2021 ◽  
Vol 118 (32) ◽  
pp. e2102642118
Author(s):  
Xizhong Jing ◽  
Yongjie Yao ◽  
Danning Wu ◽  
Hao Hong ◽  
Xu Feng ◽  
...  

Excessive activation of T cells and microglia represents a hallmark of the pathogenesis of human multiple sclerosis (MS). However, the regulatory molecules overactivating these immune cells remain to be identified. Previously, we reported that extracellular IFP35 family proteins, including IFP35 and NMI, activated macrophages as proinflammatory molecules in the periphery. Here, we investigated their functions in the process of neuroinflammation both in the central nervous system (CNS) and the periphery. Our analysis of clinical transcriptomic data showed that expression of IFP35 family proteins was up-regulated in patients with MS. Additional in vitro studies demonstrated that IFP35 and NMI were released by multiple cells. IFP35 and NMI subsequently triggered nuclear factor kappa B–dependent activation of microglia via the TLR4 pathway. Importantly, we showed that both IFP35 and NMI activated dendritic cells and promoted naïve T cell differentiation into Th1 and Th17 cells. Nmi−/−, Ifp35−/−, or administration of neutralizing antibodies against IFP35 alleviated the immune cells’ infiltration and demyelination in the CNS, thus reducing the severity of experimental autoimmune encephalomyelitis. Together, our findings reveal a hitherto unknown mechanism by which IFP35 family proteins facilitate overactivation of both T cells and microglia and propose avenues to study the pathogenesis of MS.


2019 ◽  
Vol 116 (18) ◽  
pp. 8985-8994 ◽  
Author(s):  
Massimo Costanza ◽  
Pietro L. Poliani ◽  
Paola Portararo ◽  
Barbara Cappetti ◽  
Silvia Musio ◽  
...  

The extrusion of DNA traps contributes to a key mechanism in which innate immune cells clear pathogens or induce sterile inflammation. Here we provide evidence that CD4+ T cells, a critical regulator of adaptive immunity, release extracellular threads of DNA on activation. These DNA extrusions convey autocrine costimulatory signals to T lymphocytes and can be detected in lymph nodes isolated during the priming phase of experimental autoimmune encephalomyelitis (EAE), a CD4+ T cell-driven mouse model of multiple sclerosis. Pharmacologic inhibition of mitochondrial reactive oxygen species (mtROS) abolishes the extrusion of DNA by CD4+ T cells, reducing cytokine production in vitro and T cell priming against myelin in vivo. Moreover, mtROS blockade during established EAE markedly ameliorates disease severity, dampening autoimmune inflammation of the central nervous system. Taken together, these experimental results elucidate a mechanism of intrinsic immune costimulation mediated by DNA threads released by activated T helper cells, and identify a potential therapeutic target for such disorders as multiple sclerosis, neuromyelitis optica, and CD4+ T cell-mediated disorders.


2020 ◽  
Author(s):  
Ke An ◽  
Mengjiao Xue ◽  
Jiaying Zhong ◽  
Shengnan Yu ◽  
Tianshu Lan ◽  
...  

Abstract Background: Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of its complex pathogenesis, there is no definite cure for MS. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Arsenic trioxide (ATO) is an ancient Chinese medicine used for its therapeutic properties with several autoimmune diseases. It is also used to inhibit acute immune rejection due to its anti-inflammatory and immunosuppressive properties. However, it is unclear whether ATO has a therapeutic effect on EAE, and the underlying mechanisms have not yet been clearly elucidated. In this study, we attempted to assess whether ATO could be used to ameliorate EAE in mice.Methods: ATO (0.5 mg/kg/day) was administered intraperitoneally to EAE mice 10 days post-immunization for 8 days. On day 22 post-immunization, the spinal cord, spleen, and blood were collected to analyze demyelination, inflammation, microglia activation, and the proportion of CD4+ T cells. In vitro, for mechanistic studies, CD4+ T cells were sorted from the spleen of naïve C57BL/6 mice and treated with ATO and then used for an apoptosis assay, JC-1 staining, imaging under a transmission electron microscope, and western blotting.Results: ATO delayed the onset of EAE and alleviated the severity of EAE in mice. Treatment with ATO also attenuated demyelination, alleviated inflammation, reduced microglia activation and decreased the expression levels of IL-2, IFN-γ, IL-1β, IL-6, and TNF-α in EAE mice. Moreover, the number and proportion of CD4+ T cells in the spinal cord, spleen, and peripheral blood were reduced in ATO-treated EAE mice. Finally, ATO induced CD4+ T cell apoptosis via the mitochondrial pathway both in vitro and in vivo. Additionally, the administration of ATO had no adverse effect on the heart, liver, or kidney function, nor did it induce apoptosis in the spinal cord.Conclusions: Overall, our findings indicated that ATO plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ani Grigorian ◽  
Michael Demetriou

Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease initiated by autoreactive T cells. Mgat5, a gene in the Asn (N-) linked protein glycosylation pathway, associates with MS severity and negatively regulates experimental autoimmune encephalomyelitis (EAE) and spontaneous inflammatory demyelination in mice. N-glycan branching by Mgat5 regulates interaction of surface glycoproteins with galectins, forming a molecular lattice that differentially controls the concentration of surface glycoproteins. T-cell receptor signaling, T-cell proliferation, TH1 differentiation, and CTLA-4 endocytosis are inhibited by Mgat5 branching. Non-T cells also contribute to MS pathogenesis and express abundant Mgat5 branched N-glycans. Here we explore whether Mgat5 deficiency in myelin-reactive T cells is sufficient to promote demyelinating disease. Adoptive transfer of myelin-reactive Mgat5−/− T cells into Mgat5+/+ versus Mgat5−/− recipients revealed more severe EAE in the latter, suggesting that Mgat5 branching deficiency in recipient naive T cells and/or non-T cells contribute to disease pathogenesis.


2021 ◽  
Vol 7 (25) ◽  
pp. eabg0470
Author(s):  
Jing Zhou ◽  
Xingli Zhang ◽  
Jiajia Hu ◽  
Rihao Qu ◽  
Zhibin Yu ◽  
...  

N6-methyladenosine (m6A) modification is dynamically regulated by “writer” and “eraser” enzymes. m6A “writers” have been shown to ensure the homeostasis of CD4+ T cells, but the “erasers” functioning in T cells is poorly understood. Here, we reported that m6A eraser AlkB homolog 5 (ALKBH5), but not FTO, maintains the ability of naïve CD4+ T cells to induce adoptive transfer colitis. In addition, T cell–specific ablation of ALKBH5 confers protection against experimental autoimmune encephalomyelitis. During the induced neuroinflammation, ALKBH5 deficiency increased m6A modification on interferon-γ and C-X-C motif chemokine ligand 2 messenger RNA (mRNA), thus decreasing their mRNA stability and protein expression in CD4+ T cells. These modifications resulted in attenuated CD4+ T cell responses and diminished recruitment of neutrophils into the central nervous system. Our findings reveal an unexpected specific role of ALKBH5 as an m6A eraser in controlling the pathogenicity of CD4+ T cells during autoimmunity.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Xuebin Qu ◽  
Jingjing Han ◽  
Ying Zhang ◽  
Xingqi Wang ◽  
Hongbin Fan ◽  
...  

Abstract Background Toll-like receptor 4 (TLR4) is well known for activating the innate immune system; however, it is also highly expressed in adaptive immune cells, such as CD4+ T-helper 17 (Th17) cells, which play a key role in multiple sclerosis (MS) pathology. However, the function and governing mechanism of TLR4 in Th17 remain unclear. Methods The changes of TLR4 in CD4+ T cells from MS patients and experimental autoimmune encephalomyelitis (EAE) mice were tested. TLR4-deficient (TLR4−/−) naïve T cells were induced in vitro and transferred into Rag1−/− mice to measure Th17 differentiation and EAE pathology. DNA sequence analyses combining with deletion fragments and mutation analyses, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA) were used to explore the mechanism of TLR4 signaling pathway in regulating Th17 differentiation. Results The levels of TLR4 were increased in CD4+ Th17 cells both from MS patients and EAE mice, as well as during Th17 differentiation in vitro. TLR4−/− CD4+ naïve T cells inhibited their differentiation into Th17, and transfer of TLR4−/− CD4+ naïve T cells into Rag1−/− mice was defective in promoting EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. TLR4 signal enhanced Th17 differentiation by activating RelA, downregulating the expression of miR-30a, a negative regulator of Th17 differentiation. Inhibition of RelA activity increased miR-30a level, but decreased Th17 differentiation rate. Furthermore, RelA directly regulated the expression of miR-30a via specific binding to a conserved element of miR-30a gene. Conclusions TLR4−/− CD4+ naïve T cells are inadequate in differentiating to Th17 cells both in vitro and in vivo. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation via direct binding of RelA to the regulatory element of miR-30a gene. Our results indicate modulating TLR4-RelA-miR-30a signal in Th17 may be a therapeutic target for Th17-mediated neurodegeneration in neuroinflammatory diseases.


2019 ◽  
Vol 28 (9-10) ◽  
pp. 1155-1160 ◽  
Author(s):  
J. Xu ◽  
Y. Wang ◽  
H. Jiang ◽  
M. Sun ◽  
J. Gao ◽  
...  

Multiple sclerosis is a disease characterized by inflammation and demyelination located in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for multiple sclerosis (MS). Although the roles of T cells in MS/EAE have been well investigated, little is known about the functions of other immune cells in the neuroinflammation model. Here we found that an essential cytokine transforming growth factor β (TGF-β) which could mediate the differentiation of Th17/regulatory T cells was implicated in the natural killer (NK) cells’ activity in EAE. In EAE mice, TGF-β expression was first increased at the onset and then decreased at the peak, but the expressions of TGF-β receptors and downstream molecules were not affected in EAE. When we immunized the mice with MOG antigen, it was revealed that TGF-β treatment reduced susceptibility to EAE with a lower clinical score than the control mice without TGF-β. Consistently, inflammatory cytokine production was reduced in the TGF-β treated group, especially with downregulated pathogenic interleukin-17 in the central nervous system tissue. Furthermore, TGF-β could increase the transcription level of NK cell marker NCR1 both in the spleen and in the CNS without changing other T cell markers. Meanwhile TGF-β promoted the proliferation of NK cell proliferation. Taken together, our data demonstrated that TGF-β could confer protection against EAE model in mice through NK cells, which would be useful for the clinical therapy of MS.


Sign in / Sign up

Export Citation Format

Share Document