scholarly journals Machine learning reveals systematic accumulation of electric current in lead-up to solar flares

2019 ◽  
Vol 116 (23) ◽  
pp. 11141-11146 ◽  
Author(s):  
Dattaraj B. Dhuri ◽  
Shravan M. Hanasoge ◽  
Mark C. M. Cheung

Solar flares—bursts of high-energy radiation responsible for severe space weather effects—are a consequence of the occasional destabilization of magnetic fields rooted in active regions (ARs). The complexity of AR evolution is a barrier to a comprehensive understanding of flaring processes and accurate prediction. Although machine learning (ML) has been used to improve flare predictions, the potential for revealing precursors and associated physics has been underexploited. Here, we train ML algorithms to classify between vector–magnetic-field observations from flaring ARs, producing at least one M-/X-class flare, and nonflaring ARs. Analysis of magnetic-field observations accurately classified by the machine presents statistical evidence for (i) ARs persisting in flare-productive states—characterized by AR area—for days, before and after M- and X-class flare events; (ii) systematic preflare buildup of free energy in the form of electric currents, suggesting that the associated subsurface magnetic field is twisted; and (iii) intensification of Maxwell stresses in the corona above newly emerging ARs, days before first flares. These results provide insights into flare physics and improving flare forecasting.

2006 ◽  
Vol 2 (S238) ◽  
pp. 367-368
Author(s):  
Keigo Fukumura ◽  
Masaaki Takahashi ◽  
Sachiko Tsuruta

AbstractWe study magnetohydrodynamic (MHD) standing shocks in ingoing plasmas in a black hole (BH) magnetosphere. We find that low or mid latitude (non-equatorial) standing MHD shocks are both physically possible, creating very hot and/or magnetized plasma regions close to the event horizon. We also investigate the effects of the poloidal magnetic field and the BH spin on the properties of shocks and show that both effects can quantitatively affect the MHD shock solutions. MHD shock formation can be a plausible mechanism for creating high energy radiation region above an accretion disk in AGNs.


2020 ◽  
Author(s):  
Xin Huang

<p>Solar flares originate from the release of the energy stored in the magnetic field of solar active regions. Generally, the photospheric magnetograms of active regions are used as the input of the solar flare forecasting model. However, solar flares are considered to occur in the low corona. Therefore, the role of 3D magnetic field of active regions in the solar flare forecast should be explored. We extrapolate the 3D magnetic field using the potential model for all the active regions during 2010 to 2017, and then the deep learning method is applied to extract the precursors of solar flares in the 3D magnetic field data. We find that the 3D magnetic field of active regions is helpful to build a deep learning based forecasting model.</p>


1993 ◽  
Vol 141 ◽  
pp. 323-332 ◽  
Author(s):  
Haimin Wang

AbstractThis paper reviews observations on the evolution of magnetic fields and flows in active regions which produce major flares. It includes the following topics: (1) Relationship between magnetic shear and flares; (2) Relationship between electric currents and flares; (3) Flows in active regions, particularly the emergence of new flux inside sheared penumbrae, and the mixed magnetic polarity nature of this kind of flux emergence; and (4) Changes of magnetic structure immediately before and after major solar flares; in particular, I will describe some recent findings that shear may increase after major flares.


Author(s):  
B. Filippov

Abstract Coronal mass ejections (CMEs) are tightly related to filament eruptions and usually are their continuation in the upper solar corona. It is common practice to divide all observed CMEs into fast and slow ones. Fast CMEs usually follow eruptive events in active regions near big sunspot groups and associated with major solar flares. Slow CMEs are more related to eruptions of quiescent prominences located far from active regions. We analyse 10 eruptive events with particular attention to the events on 2013 September 29 and on 2016 January 26, one of which was associated with a fast CME, while another was followed by a slow CME. We estimated the initial store of free magnetic energy in the two regions and show the resemblance of pre-eruptive situations. The difference of late behaviour of the two eruptive prominences is a consequence of the different structure of magnetic field above the filaments. We estimated this structure on the basis of potential magnetic field calculations. Analysis of other eight events confirmed that all fast CMEs originate in regions with rapidly changing with height value and direction of coronal magnetic field.


1989 ◽  
Vol 104 (2) ◽  
pp. 357-360
Author(s):  
G.M. Simnett

AbstractIt has been proposed that non-thermal ions dominate the energy transfer at the onset of solar flares. Here we examine this hypothesis in the context of flares on dMe stars. If the magnetic field in the stellar corona is significantly larger than that in the solar corona, and if strong fields in the photosphere, analagous to active regions, are absent, then a self-consistent explanation of stellar flares may be formulated.


2021 ◽  
Author(s):  
Alexander Kosovichev ◽  
Ivan Sharykin

<p>Helioseismic response to solar flares ("sunquakes") occurs due to localized force or/and momentum impacts observed during the flare impulsive phase in the lower atmosphere. Such impacts may be caused by precipitation of high-energy particles, downward shocks, or magnetic Lorentz force. Understanding the mechanism of sunquakes is a key problem of the flare energy release and transport. Our statistical analysis of M-X class flares observed by the Solar Dynamics Observatory during Solar Cycle 24 has shown that contrary to expectations, many relatively weak M-class flares produced strong sunquakes, while for some powerful X-class flares, helioseismic waves were not observed or were weak. The analysis also revealed that there were active regions characterized by the most efficient generation of sunquakes during the solar cycle. We found that the sunquake power correlates with maximal values of the X-ray flux derivative better than with the X-ray class. The sunquake data challenge the current theories of solar flares.</p>


Sign in / Sign up

Export Citation Format

Share Document