scholarly journals Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles

2020 ◽  
Vol 117 (31) ◽  
pp. 18470-18476 ◽  
Author(s):  
Mukarram A. Tahir ◽  
Zekiye P. Guven ◽  
Laura R. Arriaga ◽  
Berta Tinao ◽  
Yu-Sang Sabrina Yang ◽  
...  

Lipid membrane fusion is an essential process for a number of critical biological functions. The overall process is thermodynamically favorable but faces multiple kinetic barriers along the way. Inspired by nature’s engineered proteins such as SNAP receptor [soluble N-ethylmale-imide-sensitive factor-attachment protein receptor (SNARE)] complexes or viral fusogenic proteins that actively promote the development of membrane proximity, nucleation of a stalk, and triggered expansion of the fusion pore, here we introduce a synthetic fusogen that can modulate membrane fusion and equivalently prime lipid membranes for calcium-triggered fusion. Our fusogen consists of a gold nanoparticle functionalized with an amphiphilic monolayer of alkanethiol ligands that had previously been shown to fuse with lipid bilayers. While previous efforts to develop synthetic fusogens have only replicated the initial steps of the fusion cascade, we use molecular simulations and complementary experimental techniques to demonstrate that these nanoparticles can induce the formation of a lipid stalk and also drive its expansion into a fusion pore upon the addition of excess calcium. These results have important implications in general understanding of stimuli-triggered fusion and the development of synthetic fusogens for biomedical applications.

2017 ◽  
Vol 45 (6) ◽  
pp. 1271-1277 ◽  
Author(s):  
Kamilla M.E. Laidlaw ◽  
Rachel Livingstone ◽  
Mohammed Al-Tobi ◽  
Nia J. Bryant ◽  
Gwyn W. Gould

Trafficking within eukaryotic cells is a complex and highly regulated process; events such as recycling of plasma membrane receptors, formation of multivesicular bodies, regulated release of hormones and delivery of proteins to membranes all require directionality and specificity. The underpinning processes, including cargo selection, membrane fusion, trafficking flow and timing, are controlled by a variety of molecular mechanisms and engage multiple families of lipids and proteins. Here, we will focus on control of trafficking processes via the action of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) family of proteins, in particular their regulation by phosphorylation. We will describe how these proteins are controlled in a range of regulated trafficking events, with particular emphasis on the insulin-stimulated delivery of glucose transporters to the surface of adipose and muscle cells. Here, we focus on a few examples of SNARE phosphorylation which exemplify distinct ways in which SNARE machinery phosphorylation may regulate membrane fusion.


1998 ◽  
Vol 141 (7) ◽  
pp. 1489-1502 ◽  
Author(s):  
Jesse C. Hay ◽  
Judith Klumperman ◽  
Viola Oorschot ◽  
Martin Steegmaier ◽  
Christin S. Kuo ◽  
...  

ER-to-Golgi transport, and perhaps intraGolgi transport involves a set of interacting soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins including syntaxin 5, GOS-28, membrin, rsec22b, and rbet1. By immunoelectron microscopy we find that rsec22b and rbet1 are enriched in COPII-coated vesicles that bud from the ER and presumably fuse with nearby vesicular tubular clusters (VTCs). However, all of the SNAREs were found on both COPII- and COPI-coated membranes, indicating that similar SNARE machinery directs both vesicle pathways. rsec22b and rbet1 do not appear beyond the first Golgi cisterna, whereas syntaxin 5 and membrin penetrate deeply into the Golgi stacks. Temperature shifts reveal that membrin, rsec22b, rbet1, and syntaxin 5 are present together on membranes that rapidly recycle between peripheral and Golgi-centric locations. GOS-28, on the other hand, maintains a fixed localization in the Golgi. By immunoprecipitation analysis, syntaxin 5 exists in at least two major subcomplexes: one containing syntaxin 5 (34-kD isoform) and GOS-28, and another containing syntaxin 5 (41- and 34-kD isoforms), membrin, rsec22b, and rbet1. Both subcomplexes appear to involve direct interactions of each SNARE with syntaxin 5. Our results indicate a central role for complexes among rbet1, rsec22b, membrin, and syntaxin 5 (34 and 41 kD) at two membrane fusion interfaces: the fusion of ER-derived vesicles with VTCs, and the assembly of VTCs to form cis-Golgi elements. The 34-kD syntaxin 5 isoform, membrin, and GOS-28 may function in intraGolgi transport.


2012 ◽  
Vol 23 (2) ◽  
pp. 337-346 ◽  
Author(s):  
Francesca Morgera ◽  
Margaret R. Sallah ◽  
Michelle L. Dubuke ◽  
Pallavi Gandhi ◽  
Daniel N. Brewer ◽  
...  

Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide–sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function—it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6–Sec1 interaction is exclusive of Sec6–Sec9 but compatible with Sec6–exocyst assembly. In contrast, the Sec6–exocyst interaction is incompatible with Sec6–Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6–exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion.


2011 ◽  
Vol 22 (14) ◽  
pp. 2601-2611 ◽  
Author(s):  
Lukas Krämer ◽  
Christian Ungermann

Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.


2008 ◽  
Vol 19 (9) ◽  
pp. 3769-3781 ◽  
Author(s):  
Gábor Nagy ◽  
Ira Milosevic ◽  
Ralf Mohrmann ◽  
Katrin Wiederhold ◽  
Alexander M. Walter ◽  
...  

The assembly of four soluble N-ethylmaleimide-sensitive factor attachment protein receptor domains into a complex is essential for membrane fusion. In most cases, the four SNARE-domains are encoded by separate membrane-targeted proteins. However, in the exocytotic pathway, two SNARE-domains are present in one protein, connected by a flexible linker. The significance of this arrangement is unknown. We characterized the role of the linker in SNAP-25, a neuronal SNARE, by using overexpression techniques in synaptosomal-associated protein of 25 kDa (SNAP-25) null mouse chromaffin cells and fast electrophysiological techniques. We confirm that the palmitoylated linker-cysteines are important for membrane association. A SNAP-25 mutant without cysteines supported exocytosis, but the fusion rate was slowed down and the fusion pore duration prolonged. Using chimeric proteins between SNAP-25 and its ubiquitous homologue SNAP-23, we show that the cysteine-containing part of the linkers is interchangeable. However, a stretch of 10 hydrophobic and charged amino acids in the C-terminal half of the SNAP-25 linker is required for fast exocytosis and in its absence the calcium dependence of exocytosis is shifted toward higher concentrations. The SNAP-25 linker therefore might have evolved as an adaptation toward calcium triggering and a high rate of execution of the fusion process, those features that distinguish exocytosis from other membrane fusion pathways.


2005 ◽  
Vol 16 (10) ◽  
pp. 4755-4764 ◽  
Author(s):  
Akhil Bhalla ◽  
Ward C. Tucker ◽  
Edwin R. Chapman

Ca2+-triggered exocytosis of synaptic vesicles is controlled by the Ca2+-binding protein synaptotagmin (syt) I. Fifteen additional isoforms of syt have been identified. Here, we compared the abilities of three syt isoforms (I, VII, and IX) to regulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in vitro in response to divalent cations. We found that different isoforms of syt couple distinct ranges of Ca2+, Ba2+, and Sr2+ to membrane fusion; syt VII was ∼400-fold more sensitive to Ca2+ than was syt I. Omission of phosphatidylserine (PS) from both populations of liposomes completely abrogated the ability of all three isoforms of syt to stimulate fusion. Mutations that selectively inhibit syt·target-SNARE (t-SNARE) interactions reduced syt stimulation of fusion. Using Sr2+ and Ba2+, we found that binding of syt to PS and t-SNAREs can be dissociated from activation of fusion, uncovering posteffector-binding functions for syt. Our data demonstrate that different syt isoforms are specialized to sense different ranges of divalent cations and that PS is an essential effector of Ca2+·syt action.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 430 ◽  
Author(s):  
Anja Sadžak ◽  
Janez Mravljak ◽  
Nadica Maltar-Strmečki ◽  
Zoran Arsov ◽  
Goran Baranović ◽  
...  

The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.


Sign in / Sign up

Export Citation Format

Share Document