scholarly journals Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1

2012 ◽  
Vol 23 (2) ◽  
pp. 337-346 ◽  
Author(s):  
Francesca Morgera ◽  
Margaret R. Sallah ◽  
Michelle L. Dubuke ◽  
Pallavi Gandhi ◽  
Daniel N. Brewer ◽  
...  

Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide–sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function—it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6–Sec1 interaction is exclusive of Sec6–Sec9 but compatible with Sec6–exocyst assembly. In contrast, the Sec6–exocyst interaction is incompatible with Sec6–Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6–exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion.

2011 ◽  
Vol 22 (14) ◽  
pp. 2601-2611 ◽  
Author(s):  
Lukas Krämer ◽  
Christian Ungermann

Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.


2012 ◽  
Vol 23 (23) ◽  
pp. 4611-4622 ◽  
Author(s):  
Braden T. Lobingier ◽  
Alexey J. Merz

Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.


2010 ◽  
Vol 21 (13) ◽  
pp. 2297-2305 ◽  
Author(s):  
Christopher M. Hickey ◽  
William Wickner

Vacuole homotypic fusion has been reconstituted with all purified components: vacuolar lipids, four soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Sec17p, Sec18p, the Rab Ypt7p, and the hexameric homotypic fusion and vacuole protein sorting complex (HOPS). HOPS is a Rab-effector with direct affinity for SNAREs (presumably via its Sec1-Munc18 homologous subunit Vps33p) and for certain vacuolar lipids. Each of these pure vacuolar proteins was required for optimal proteoliposome clustering, raising the question of which was most directly involved. We now present model subreactions of clustering and fusion that reveal that HOPS is the direct agent of tethering. The Rab and vacuole lipids contribute to tethering by supporting the membrane association of HOPS. HOPS indirectly facilitates trans-SNARE complex formation by tethering membranes, because the synthetic liposome tethering factor polyethylene glycol can also stimulate trans-SNARE complex formation and fusion. SNAREs further stabilize the associations of HOPS-tethered membranes. HOPS then protects newly formed trans-SNARE complexes from disassembly by Sec17p/Sec18p.


2017 ◽  
Vol 45 (6) ◽  
pp. 1271-1277 ◽  
Author(s):  
Kamilla M.E. Laidlaw ◽  
Rachel Livingstone ◽  
Mohammed Al-Tobi ◽  
Nia J. Bryant ◽  
Gwyn W. Gould

Trafficking within eukaryotic cells is a complex and highly regulated process; events such as recycling of plasma membrane receptors, formation of multivesicular bodies, regulated release of hormones and delivery of proteins to membranes all require directionality and specificity. The underpinning processes, including cargo selection, membrane fusion, trafficking flow and timing, are controlled by a variety of molecular mechanisms and engage multiple families of lipids and proteins. Here, we will focus on control of trafficking processes via the action of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) family of proteins, in particular their regulation by phosphorylation. We will describe how these proteins are controlled in a range of regulated trafficking events, with particular emphasis on the insulin-stimulated delivery of glucose transporters to the surface of adipose and muscle cells. Here, we focus on a few examples of SNARE phosphorylation which exemplify distinct ways in which SNARE machinery phosphorylation may regulate membrane fusion.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3665-3674 ◽  
Author(s):  
Neeraj Tiwari ◽  
Cheng-Chun Wang ◽  
Cristiana Brochetta ◽  
Gou Ke ◽  
Francesca Vita ◽  
...  

Abstract Inflammatory responses by mast cells are characterized by massive exocytosis of prestored granular mediators followed by cytokine/chemokine release. The vesicular trafficking mechanisms involved remain poorly understood. Vesicular-associated membrane protein-8 (VAMP-8), a member of the soluble N-ethylmaleimide–sensitive factor (NSF) attachment protein receptor (SNARE) family of fusion proteins initially characterized in endosomal and endosomal-lysosomal fusion, may also function in regulated exocytosis. Here we show that in bone marrow–derived mast cells (BMMCs) VAMP-8 partially colocalized with secretory granules and redistributed upon stimulation. This was associated with increased SNARE complex formation with the target t-SNAREs, SNAP-23 and syntaxin-4. VAMP-8–deficient BMMCs exhibited a markedly reduced degranulation response after IgE+ antigen-, thapsigargin-, or ionomycin-induced stimulation. VAMP-8–deficient mice also showed reduced plasma histamine levels in passive systemic anaphylaxis experiments, while cytokine/chemokine release was not affected. Unprocessed TNF accumulated at the plasma membrane where it colocalized with a VAMP-3–positive vesicular compartment but not with VAMP-8. The findings demonstrate that VAMP-8 segregates secretory lysosomal granule exocytosis in mast cells from cytokine/chemokine molecular trafficking pathways.


2000 ◽  
Vol 151 (2) ◽  
pp. 439-452 ◽  
Author(s):  
Eric Grote ◽  
Chavela M. Carr ◽  
Peter J. Novick

In yeast, assembly of exocytic soluble N-ethylmaleimide–sensitive fusion protein (NSF) attachment protein receptor (SNARE) complexes between the secretory vesicle SNARE Sncp and the plasma membrane SNAREs Ssop and Sec9p occurs at a late stage of the exocytic reaction. Mutations that block either secretory vesicle delivery or tethering prevent SNARE complex assembly and the localization of Sec1p, a SNARE complex binding protein, to sites of secretion. By contrast, wild-type levels of SNARE complexes persist in the sec1-1 mutant after a secretory block is imposed, suggesting a role for Sec1p after SNARE complex assembly. In the sec18-1 mutant, cis-SNARE complexes containing surface-accessible Sncp accumulate in the plasma membrane. Thus, one function of Sec18p is to disassemble SNARE complexes on the postfusion membrane.


2013 ◽  
Vol 24 (10) ◽  
pp. 1593-1601 ◽  
Author(s):  
Farid El Kasmi ◽  
Cornelia Krause ◽  
Ulrike Hiller ◽  
York-Dieter Stierhof ◽  
Ulrike Mayer ◽  
...  

Membrane fusion is mediated by soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes. Although membrane fusion is required for separating daughter cells in eukaryotic cytokinesis, the SNARE complexes involved are not known. In plants, membrane vesicles targeted to the cell division plane fuse with one another to form the partitioning membrane, progressing from the center to the periphery of the cell. In Arabidopsis, the cytokinesis-specific Qa-SNARE KNOLLE interacts with two other Q-SNAREs, SNAP33 and novel plant-specific SNARE 11 (NPSN11), whose roles in cytokinesis are not clear. Here we show by coimmunoprecipitation that KNOLLE forms two SNARE complexes that differ in composition. One complex is modeled on the trimeric plasma membrane type of SNARE complex and includes, in addition to KNOLLE, the promiscuous Qb,c-SNARE SNAP33 and the R-SNARE vesicle-associated membrane protein (VAMP) 721,722, also involved in innate immunity. In contrast, the other KNOLLE-containing complex is tetrameric and includes Qb-SNARE NPSN11, Qc-SNARE SYP71, and VAMP721,722. Elimination of only one or the other type of KNOLLE complex by mutation, including the double mutant npsn11 syp71, causes a mild or no cytokinesis defect. In contrast, the two double mutants snap33 npsn11 and snap33 syp71 eliminate both types of KNOLLE complexes and display knolle-like cytokinesis defects. Thus the two distinct types of KNOLLE complexes appear to jointly mediate membrane fusion in Arabidopsis cytokinesis.


1998 ◽  
Vol 141 (7) ◽  
pp. 1489-1502 ◽  
Author(s):  
Jesse C. Hay ◽  
Judith Klumperman ◽  
Viola Oorschot ◽  
Martin Steegmaier ◽  
Christin S. Kuo ◽  
...  

ER-to-Golgi transport, and perhaps intraGolgi transport involves a set of interacting soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins including syntaxin 5, GOS-28, membrin, rsec22b, and rbet1. By immunoelectron microscopy we find that rsec22b and rbet1 are enriched in COPII-coated vesicles that bud from the ER and presumably fuse with nearby vesicular tubular clusters (VTCs). However, all of the SNAREs were found on both COPII- and COPI-coated membranes, indicating that similar SNARE machinery directs both vesicle pathways. rsec22b and rbet1 do not appear beyond the first Golgi cisterna, whereas syntaxin 5 and membrin penetrate deeply into the Golgi stacks. Temperature shifts reveal that membrin, rsec22b, rbet1, and syntaxin 5 are present together on membranes that rapidly recycle between peripheral and Golgi-centric locations. GOS-28, on the other hand, maintains a fixed localization in the Golgi. By immunoprecipitation analysis, syntaxin 5 exists in at least two major subcomplexes: one containing syntaxin 5 (34-kD isoform) and GOS-28, and another containing syntaxin 5 (41- and 34-kD isoforms), membrin, rsec22b, and rbet1. Both subcomplexes appear to involve direct interactions of each SNARE with syntaxin 5. Our results indicate a central role for complexes among rbet1, rsec22b, membrin, and syntaxin 5 (34 and 41 kD) at two membrane fusion interfaces: the fusion of ER-derived vesicles with VTCs, and the assembly of VTCs to form cis-Golgi elements. The 34-kD syntaxin 5 isoform, membrin, and GOS-28 may function in intraGolgi transport.


Sign in / Sign up

Export Citation Format

Share Document