scholarly journals Targeted inhibition of thrombin attenuates murine neonatal necrotizing enterocolitis

2020 ◽  
Vol 117 (20) ◽  
pp. 10958-10969 ◽  
Author(s):  
Kopperuncholan Namachivayam ◽  
Krishnan MohanKumar ◽  
Darla R. Shores ◽  
Sunil K. Jain ◽  
Jennifer Fundora ◽  
...  

Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants and an orphan disease with no specific treatment. Most patients with confirmed NEC develop moderate-severe thrombocytopenia requiring one or more platelet transfusions. Here we used our neonatal murine model of NEC-related thrombocytopenia to investigate mechanisms of platelet depletion associated with this disease [K. Namachivayam, K. MohanKumar, L. Garg, B. A. Torres, A. Maheshwari, Pediatr. Res. 81, 817–824 (2017)]. In this model, enteral administration of immunogen trinitrobenzene sulfonate (TNBS) in 10-d-old mouse pups produces an acute necrotizing ileocolitis resembling human NEC within 24 h, and these mice developed thrombocytopenia at 12 to 15 h. We hypothesized that platelet activation and depletion occur during intestinal injury following exposure to bacterial products translocated across the damaged mucosa. Surprisingly, platelet activation began in our model 3 h after TNBS administration, antedating mucosal injury or endotoxinemia. Platelet activation was triggered by thrombin, which, in turn, was activated by tissue factor released from intestinal macrophages. Compared to adults, neonatal platelets showed enhanced sensitivity to thrombin due to higher expression of several downstream signaling mediators and the deficiency of endogenous thrombin antagonists. The expression of tissue factor in intestinal macrophages was also unique to the neonate. Targeted inhibition of thrombin by a nanomedicine-based approach was protective without increasing interstitial hemorrhages in the inflamed bowel or other organs. In support of these data, we detected increased circulating tissue factor and thrombin-antithrombin complexes in patients with NEC. Our findings show that platelet activation is an important pathophysiological event and a potential therapeutic target in NEC.

1998 ◽  
Vol 80 (08) ◽  
pp. 266-272 ◽  
Author(s):  
Andrew Parker ◽  
William Fay

SummaryClinical trials suggest that the risk of thrombosis during coronary angioplasty is lower with ionic contrast agents than with nonionic contrast agents. However, the molecular mechanisms underlying this effect are unknown. This study examined the effects of contrast agents on thrombin formation and its interaction with substrates, inhibitors, and ligands to define potential mechanisms by which contrast agents affect thrombus formation. Two ionic agents, diatrizoate and ioxaglate, and one nonionic agent, ioversol, were studied. Ionic agents inhibited factor X activation by the tissue factor-factor VIIa complex more potently than ioversol (53 ± 3.7, 43.0 ± 1.9, and 26.5 ± 2.4% inhibition by diatrizoate, ioxaglate, and ioversol, respectively, at concentrations of 5%). Ionic contrast agents were potent inhibitors of prothrombinase function, inhibiting thrombin formation by >75% at contrast concentrations of 0.6% (p <0.005). Ioversol inhibited prothrombinase to a significantly lesser extent than ionic agents. Clotting assays suggested that ioxaglate was the most potent inhibitor of thrombin generation in plasma despite having the least effect on fibrin polymerization. Contrast agents inhibited binding of thrombin to fibrin, with ionic agents producing a more potent effect than ioversol (p <0.02). However, contrast agents did not inhibit thrombin-mediated platelet activation, had only a minor effect on inhibition of thrombin by antithrombin III, and did not affect thrombin-hirudin interactions. In summary, these studies identify specific mechanisms by which radiographic contrast agents inhibit thrombin formation and function – i.e. inhibition of tissue factor-dependent factor Xa generation, inhibition of the prothrombinase complex, and inhibition of thrombin binding to fibrin. These findings may help to explain the reduced risk of thrombosis during coronary angioplasty associated with ionic contrast agents.


2011 ◽  
Vol 31 (8) ◽  
pp. 1772-1780 ◽  
Author(s):  
Erik W. Holy ◽  
Marc Forestier ◽  
Eva K. Richter ◽  
Alexander Akhmedov ◽  
Florian Leiber ◽  
...  

Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1504-1507
Author(s):  
AI Schafer ◽  
GB Zavoico ◽  
J Loscalzo ◽  
AK Maas

Endothelial cell prostacyclin (PGI2) inhibits platelet activation by raising platelet cyclic AMP. Previously, platelet activation was also shown to be blocked by plasmin formed by endothelium-derived tissue plasminogen activator (TPA). We have now studied interactions between PGI2 and plasmin in the control of platelet function. PGI2 and plasmin cause synergistic inhibition of thrombin- and ADP-induced aggregation of washed platelets. Inhibition by PGI2 is similarly potentiated by TPA added to platelet-rich plasma to generate plasmin. Thrombin-stimulated rise in platelet cytosolic Ca2+, measured by fura2 fluorescence, and thromboxane A2 formation, measured by radioimmunoassay (RIA), are likewise synergistically inhibited by PGI2 and plasmin. Plasmin neither increases nor potentiates PGI2-stimulated increases in platelet cyclic AMP. Thus, PGI2 and plasmin cause synergistic inhibition of platelet activation by both cyclic AMP-dependent and independent mechanisms. This interaction between two different endothelium-derived products may play an important role in localizing the hemostatic plug to a site of vascular injury by preventing further thrombin-mediated accrual of platelets.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3207-3207
Author(s):  
Patrick Van Dreden ◽  
Joseph Gligorov ◽  
Evangelos Terpos ◽  
Mathieu Jamelot ◽  
Michele Sabbah ◽  
...  

Abstract Background: COVID-19 has been associated with hypercoagulability, endothelial cell injury and frequent thrombotic complications resulting both from direct effects of the virus on the endothelium and from the 'cytokine storm' resulting from the host's immune response. Since the COVID-19 vaccines have been shown to effectively prevent symptomatic infection including hospital admissions and severe disease, the risk of COVID-19-related thrombosis should be expected to (almost) disappear in vaccinated individuals. However, some rare cases of venous thrombosis have been reported in individuals vaccinated with mRNA vaccines. Thus, there is a sharp contrast between the clinical or experimental data reported in the literature on COVID-19 and on the rare thrombotic events observed after the vaccination with these vaccines. This phenomenon raised some scepticism of even some fear about the safety of these vaccines which could compromise the adhesion of the citizens in the vaccination program. Aims: We conducted a prospective observational study, to explore the impact of vaccination with the BNT162b2 (Pfizer/BioNTech) on blood hypercoagulability and endothelial cell activation and to investigate if this is modified by the presence of active cancer. Methods: In total 229 subjects were prospectively included in the study from April to June 2021. Subjects were stratified in three predefined groups: 127 vaccinated patients with active cancer (VOnco group), 72 vaccinated health care workers (VHcw group) and 30 non vaccinated health individuals (Control group). Blood samples were obtained 2 days after the administration of the first dose of BNT162b2 vaccine and collected in Vacutainer® tubes (0.109 mol/L trisodium citrate). Platelet poor plasma (PPP) was prepared by double centrifugation at 2000 g for 20 minutes at room temperature and plasma aliquots were stored at -80°C until assayed. Samples of PPP were assessed for thrombin generation (TG) with PPP-Reagent® (Thrombogram-Thrombinoscope assay with PPP-Reagent®TF 5pM), E-selectin, D-dimers, (D-Di), Tissue Factor (TFa), procoagulant phospholipid-dependent clotting time (Procag-PPL) and von Willebrand factor (vWF), thrombomodulin (TM), tissue factor pathway inhibitor (TFPI), and platelet factor 4 (PF4). All assays were from Diagnostica Stago (France). The upper and lower normal limits (UNL and LNL) for each biomarker were calculated by the mean±2SD for the control group. Results: All vaccinated subjects showed significantly increased levels of PF4 (71% &gt;UNL, p&lt;0.001), D-Dimers (74% &gt;UNL, p&lt;0.01), vWF (60% &gt;UNL, p&lt;0.01), FVIII (62% &gt;UNL, p&lt;0.01) and shorter Procoag-PPL clotting time (96% &lt;LNL, p&lt;0.001), as compared to controls. Thrombin generation showed significantly higher Peak (60% &gt;UNL, p&lt;0.01), ETP (38% &gt;UNL, p&lt;0.01) and MRI (66% &gt;UNL, p&lt;0.01) but no differences in lag-time in vaccinated subjects as compared to the control group. Vaccinated subjects did not show any increase at the levels of TFa, TFPI, TM and E-selectin in comparison with the control group. The studied biomarkers were not significantly different between the VOnco and VHcw groups. Conclusion: The ROADMAP-COVID-19-Vaccine study shows that administration of the first dose of the BNT162b2 vaccine induced significant platelet activation documented by shorter Procoag-PPL associated with increased levels of PF4. Plasma hypercoagulability was less frequent in vaccinated individuals whereas there was no evidence of significant endothelial cells activation after vaccination. Interestingly, the presence of active cancer was not associated with an enhancement of platelet activation, hypercoagulability, or endothelial cell activation after the vaccination. Probably, the generated antibodies against the spike protein or lead to platelet activation in a FcyRIIa dependent manner that results in PF4 release. The implication of the mild inflammatory reaction triggered by the vaccination could be another possible pathway leading to platelet activation. Nevertheless, vaccination does not provoke endothelial activation even in patients with cancer. The findings of the ROADMAP-COVID-19-Vaccine study support the concept administration of mRNA based vaccines does not directly cause a systematic hypercoagulability. Disclosures Gligorov: Roche-Genentech: Research Funding; Novartis: Research Funding; Onxeo: Research Funding; Daichi: Research Funding; MSD: Research Funding; Eisai: Research Funding; Genomic Heatlh: Research Funding; Ipsen: Research Funding; Macrogenics: Research Funding; Pfizer: Research Funding. Terpos: Novartis: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Genesis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Sanofi: Consultancy, Honoraria, Research Funding; GSK: Honoraria, Research Funding. Dimopoulos: Amgen: Honoraria; BMS: Honoraria; Janssen: Honoraria; Beigene: Honoraria; Takeda: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (11) ◽  
pp. 1330-1341 ◽  
Author(s):  
Eugenio D. Hottz ◽  
Isaclaudia G. Azevedo-Quintanilha ◽  
Lohanna Palhinha ◽  
Lívia Teixeira ◽  
Ester A. Barreto ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/β3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.


1996 ◽  
Vol 271 (1) ◽  
pp. C54-C60 ◽  
Author(s):  
M. Kimura ◽  
T. T. Andersen ◽  
J. W. Fenton ◽  
W. F. Bahou ◽  
A. Aviv

We tested the hypothesis that the inhibition of thrombin-induced platelet activation by plasmin is mediated via the enzymatic action of plasmin on the functional thrombin receptor. We monitored the binding of the anti-thrombin receptor antibody [anti-TR-(34-46)] to platelets; this binding is sensitive to the cleavage of the thrombin receptor at amino acid residues Arg-41 to Ser-42. Plasmin inhibited anti-TR-(34-46) binding in dose- and time-dependent manners. The inactive synthetic peptide with the amino acid sequence 40-55 of the thrombin receptor (D-FPRSFLLRNPNDKYEPF) was similarly cleaved by thrombin and plasmin to an active peptide (SFLLRNPNDKYEPF) that produced robust cytosolic Ca2+ responses. At high concentrations, plasmin itself can activate platelets. We explored this effect with the use of anti-TR-(1-160). This antibody abolished the cytosolic Ca2+ responses to thrombin and to the thrombin receptor-activating peptide SFLLRN but did not attenuate the plasmin-induced cytosolic Ca2+ response. Thus plasmin inhibits thrombin-evoked platelet activation by cleaving the thrombin receptor, but the plasmin-induced cytosolic Ca2+ response is not due to the generation of the tethered peptide of the thrombin receptor.


2019 ◽  
Vol 287 ◽  
pp. e142-e143
Author(s):  
L. Li ◽  
D. Huskens ◽  
P.G. de Groot ◽  
M. Roest ◽  
B. de Laat

Sign in / Sign up

Export Citation Format

Share Document