scholarly journals Comprehensive analysis of a mouse model of spontaneous uveoretinitis using single-cell RNA sequencing

2019 ◽  
Vol 116 (52) ◽  
pp. 26734-26744 ◽  
Author(s):  
Jacob S. Heng ◽  
Sean F. Hackett ◽  
Genevieve L. Stein-O’Brien ◽  
Briana L. Winer ◽  
John Williams ◽  
...  

Autoimmune uveoretinitis is a significant cause of visual loss, and mouse models offer unique opportunities to study its disease mechanisms.Aire−/−mice fail to express self-antigens in the thymus, exhibit reduced central tolerance, and develop a spontaneous, chronic, and progressive uveoretinitis. Using single-cell RNA sequencing (scRNA-seq), we characterized wild-type andAire−/−retinas to define, in a comprehensive and unbiased manner, the cell populations and gene expression patterns associated with disease. Based on scRNA-seq, immunostaining, and in situ hybridization, we infer that 1) the dominant effector response inAire−/−retinas is Th1-driven, 2) a subset of monocytes convert to either a macrophage/microglia state or a dendritic cell state, 3) the development of tertiary lymphoid structures constitutes part of theAire−/−retinal phenotype, 4) all major resident retinal cell types respond to interferon gamma (IFNG) by changing their patterns of gene expression, and 5) Muller glia up-regulate specific genes in response to IFN gamma and may act as antigen-presenting cells.

iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102357
Author(s):  
Brenda Morsey ◽  
Meng Niu ◽  
Shetty Ravi Dyavar ◽  
Courtney V. Fletcher ◽  
Benjamin G. Lamberty ◽  
...  

2020 ◽  
Vol 36 (13) ◽  
pp. 4021-4029
Author(s):  
Hyundoo Jeong ◽  
Zhandong Liu

Abstract Summary Single-cell RNA sequencing technology provides a novel means to analyze the transcriptomic profiles of individual cells. The technique is vulnerable, however, to a type of noise called dropout effects, which lead to zero-inflated distributions in the transcriptome profile and reduce the reliability of the results. Single-cell RNA sequencing data, therefore, need to be carefully processed before in-depth analysis. Here, we describe a novel imputation method that reduces dropout effects in single-cell sequencing. We construct a cell correspondence network and adjust gene expression estimates based on transcriptome profiles for the local subnetwork of cells of the same type. We comprehensively evaluated this method, called PRIME (PRobabilistic IMputation to reduce dropout effects in Expression profiles of single-cell sequencing), on synthetic and eight real single-cell sequencing datasets and verified that it improves the quality of visualization and accuracy of clustering analysis and can discover gene expression patterns hidden by noise. Availability and implementation The source code for the proposed method is freely available at https://github.com/hyundoo/PRIME. Supplementary information Supplementary data are available at Bioinformatics online.


2016 ◽  
Author(s):  
Valentine Svensson ◽  
Kedar Nath Natarajan ◽  
Lam-Ha Ly ◽  
Ricardo J Miragaia ◽  
Charlotte Labalette ◽  
...  

AbstractHigh-throughput single cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, and has revealed new cell types, and new insights into developmental process and stochasticity in gene expression. There are now several published scRNA-seq protocols, which all sequence transcriptomes from a minute amount of starting material. Therefore, a key question is how these methods compare in terms of sensitivity of detection of mRNA molecules, and accuracy of quantification of gene expression. Here, we assessed the sensitivity and accuracy of many published data sets based on standardized spike-ins with a uniform raw data processing pipeline. We developed a flexible and fast UMI counting tool (https://github.com/vals/umis) which is compatible with all UMI based protocols. This allowed us to relate these parameters to sequencing depth, and discuss the trade offs between the different methods. To confirm our results, we performed experiments on cells from the same population using three different protocols. We also investigated the effect of RNA degradation on spike-in molecules, and the average efficiency of scRNA-seq on spike-in molecules versus endogenous RNAs.


Author(s):  
Di He ◽  
Di Wang ◽  
Ping Lu ◽  
Nan Yang ◽  
Zhigang Xue ◽  
...  

Abstract Lung adenocarcinoma (LUAD) harboring EGFR mutations prevails in Asian population. However, the inter-patient and intra-tumor heterogeneity has not been addressed at single-cell resolution. Here we performed single-cell RNA sequencing (scRNA-seq) of total 125,674 cells from seven stage-I/II LUAD samples harboring EGFR mutations and five tumor-adjacent lung tissues. We identified diverse cell types within the tumor microenvironment (TME) in which myeloid cells and T cells were the most abundant stromal cell types in tumors and adjacent lung tissues. Within tumors, accompanied by an increase in CD1C+ dendritic cells, the tumor-associated macrophages (TAMs) showed pro-tumoral functions without signature gene expression of defined M1 or M2 polarization. Tumor-infiltrating T cells mainly displayed exhausted and regulatory T-cell features. The adenocarcinoma cells can be categorized into different subtypes based on their gene expression signatures in distinct pathways such as hypoxia, glycolysis, cell metabolism, translation initiation, cell cycle, and antigen presentation. By performing pseudotime trajectory, we found that ELF3 was among the most upregulated genes in more advanced tumor cells. In response to secretion of inflammatory cytokines (e.g., IL1B) from immune infiltrates, ELF3 in tumor cells was upregulated to trigger the activation of PI3K/Akt/NF-κB pathway and elevated expression of proliferation and anti-apoptosis genes such as BCL2L1 and CCND1. Taken together, our study revealed substantial heterogeneity within early-stage LUAD harboring EGFR mutations, implicating complex interactions among tumor cells, stromal cells and immune infiltrates in the TME.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiuying Li ◽  
Guillaume Noell ◽  
Tracy Tabib ◽  
Alyssa D. Gregory ◽  
Humberto E. Trejo Bittar ◽  
...  

Abstract Background Whole lung tissue transcriptomic profiling studies in chronic obstructive pulmonary disease (COPD) have led to the identification of several genes associated with the severity of airflow limitation and/or the presence of emphysema, however, the cell types driving these gene expression signatures remain unidentified. Methods To determine cell specific transcriptomic changes in severe COPD, we conducted single-cell RNA sequencing (scRNA seq) on n = 29,961 cells from the peripheral lung parenchymal tissue of nonsmoking subjects without underlying lung disease (n = 3) and patients with severe COPD (n = 3). The cell type composition and cell specific gene expression signature was assessed. Gene set enrichment analysis (GSEA) was used to identify the specific cell types contributing to the previously reported transcriptomic signatures. Results T-distributed stochastic neighbor embedding and clustering of scRNA seq data revealed a total of 17 distinct populations. Among them, the populations with more differentially expressed genes in cases vs. controls (log fold change >|0.4| and FDR = 0.05) were: monocytes (n = 1499); macrophages (n = 868) and ciliated epithelial cells (n = 590), respectively. Using GSEA, we found that only ciliated and cytotoxic T cells manifested a trend towards enrichment of the previously reported 127 regional emphysema gene signatures (normalized enrichment score [NES] = 1.28 and = 1.33, FDR = 0.085 and = 0.092 respectively). Among the significantly altered genes present in ciliated epithelial cells of the COPD lungs, QKI and IGFBP5 protein levels were also found to be altered in the COPD lungs. Conclusions scRNA seq is useful for identifying transcriptional changes and possibly individual protein levels that may contribute to the development of emphysema in a cell-type specific manner.


2019 ◽  
Author(s):  
Carman Man-Chung Li ◽  
Hana Shapiro ◽  
Christina Tsiobikas ◽  
Laura Selfors ◽  
Huidong Chen ◽  
...  

AbstractAging of the mammary gland is closely associated with increased susceptibility to diseases such as cancer, but there have been limited systematic studies of aging-induced alterations within this organ. We performed high-throughput single-cell RNA-sequencing (scRNA-seq) profiling of mammary tissues from young and old nulliparous mice, including both epithelial and stromal cell types. Our analysis identified altered proportions and distinct gene expression patterns in numerous cell populations as a consequence of the aging process, independent of parity and lactation. In addition, we detected a subset of luminal cells that express both hormone-sensing and alveolar markers and decrease in relative abundance with age. These data provide a high-resolution landscape of aging mammary tissues, with potential implications for normal tissue functions and cancer predisposition.


2021 ◽  
Vol 11 ◽  
Author(s):  
Meijia Gu ◽  
Ti He ◽  
Yuncong Yuan ◽  
Suling Duan ◽  
Xin Li ◽  
...  

BackgroundCervical cancer is one of the most common gynecological cancers worldwide. The tumor microenvironment significantly influences the therapeutic response and clinical outcome. However, the complex tumor microenvironment of cervical cancer and the molecular mechanisms underlying chemotherapy resistance are not well studied. This study aimed to comprehensively analyze cells from pretreated and chemoresistant cervical cancer tissues to generate a molecular census of cell populations.MethodsBiopsy tissues collected from patients with cervical squamous cell carcinoma, cervical adenocarcinoma, and chronic cervicitis were subjected to single-cell RNA sequencing using the 10× Genomics platform. Unsupervised clustering analysis of cells was performed to identify the main cell types, and important cell clusters were reclustered into subpopulations. Gene expression profiles and functional enrichment analysis were used to explore gene expression and functional differences between cell subpopulations in cervicitis and cervical cancer samples and between chemoresistant and chemosensitive samples.ResultsA total of 24,371 cells were clustered into nine separate cell types, including immune and non-immune cells. Differentially expressed genes between chemoresistant and chemosensitive patients enriched in the phosphoinositide 3-kinase (PI3K)/AKT pathway were involved in tumor development, progression, and apoptosis, which might lead to chemotherapy resistance.ConclusionsOur study provides a comprehensive overview of the cancer microenvironment landscape and characterizes its gene expression and functional difference in chemotherapy resistance. Consequently, our study deepens the insights into cervical cancer biology through the identification of gene markers for diagnosis, prognosis, and therapy.


2021 ◽  
Author(s):  
Josephine Bageritz ◽  
Niklas Krausse ◽  
Schayan Yousefian ◽  
Svenja Leible ◽  
Erica Valentini ◽  
...  

Single cell RNA sequencing (scRNA-seq) has become an important method to identify cell types, delineate the trajectories of cell differentiation in whole organisms and understand the heterogeneity in cellular responses. Nevertheless, sample collection and processing remain a severe bottleneck for scRNA-seq experiments. Cell isolation protocols often lead to significant changes in the transcriptomes of cells, requiring novel methods to preserve cell states. Here, we developed and benchmarked protocols using glyoxal as a fixative for scRNA-seq application. Using Drop-seq methodology, we detected high numbers of transcripts and genes from glyoxal-fixed Drosophila cells after scRNA-seq. The effective glyoxal fixation of transcriptomes in Drosophila and human cells was further supported by a high correlation of gene expression data between glyoxal-fixed and unfixed samples. Accordingly, we also found highly expressed genes overlapping to a large extent between experimental conditions. These results indicated that our fixation protocol did not induce considerable changes in gene expression and conserved the transcriptome for subsequent single cell isolation procedures. In conclusion, we present glyoxal as a suitable fixative for Drosophila cells and potentially cells of other species that allows high-quality scRNA-seq applications.


2021 ◽  
Author(s):  
Elnaz Mirzaei Mehrabad ◽  
Aditya Bhaskara ◽  
Benjamin T. Spike

AbstractMotivationSingle cell RNA sequencing (scRNA-seq) is a powerful gene expression profiling technique that is presently revolutionizing the study of complex cellular systems in the biological sciences. Existing single-cell RNA-sequencing methods suffer from sub-optimal target recovery leading to inaccurate measurements including many false negatives. The resulting ‘zero-inflated’ data may confound data interpretation and visualization.ResultsSince cells have coherent phenotypes defined by conserved molecular circuitries (i.e. multiple gene products working together) and since similar cells utilize similar circuits, information about each each expression value or ‘node’ in a multi-cell, multi-gene scRNA-Seq data set is expected to also be predictable from other nodes in the data set. Based on this logic, several approaches have been proposed to impute missing values by extracting information from non-zero measurements in a data set. In this study, we applied non-negative matrix factorization approaches to a selection of published scRNASeq data sets to recommend new values where original measurements are likely to be inaccurate and where ‘zero’ measurements are predicted to be false negatives. The resulting imputed data model predicts novel cell type markers and expression patterns more closely matching gene expression values from orthogonal measurements and/or predicted literature than the values obtained from other previously published imputation [email protected] and implementationFIESTA is written in R and is available at https://github.com/elnazmirzaei/FIESTA and https://github.com/TheSpikeLab/FIESTA.


Sign in / Sign up

Export Citation Format

Share Document