scholarly journals Intestinal bile acids directly modulate the structure and function ofC. difficileTcdB toxin

2020 ◽  
Vol 117 (12) ◽  
pp. 6792-6800 ◽  
Author(s):  
John Tam ◽  
Simoun Icho ◽  
Evelyn Utama ◽  
Kathleen E. Orrell ◽  
Rodolfo F. Gómez-Biagi ◽  
...  

Intestinal bile acids are known to modulate the germination and growth ofClostridioides difficile. Here we describe a role for intestinal bile acids in directly binding and neutralizing TcdB toxin, the primary determinant ofC. difficiledisease. We show that individual primary and secondary bile acids reversibly bind and inhibit TcdB to varying degrees through a mechanism that requires the combined oligopeptide repeats region to which no function has previously been ascribed. We find that bile acids induce TcdB into a compact “balled up” conformation that is no longer able to bind cell surface receptors. Lastly, through a high-throughput screen designed to identify bile acid mimetics we uncovered nonsteroidal small molecule scaffolds that bind and inhibit TcdB through a bile acid-like mechanism. In addition to suggesting a role for bile acids inC. difficilepathogenesis, these findings provide a framework for development of a mechanistic class ofC. difficileantitoxins.

2020 ◽  
Author(s):  
Kenya Honda ◽  
Yuko Sato ◽  
Koji Atarashi ◽  
Damian Plichta ◽  
Yasumichi Arai ◽  
...  

Abstract Centenarians, or individuals who have lived more than a century, represent the ultimate model of successful longevity associated with decreased susceptibility to ageing-associated illness and chronic inflammation. The gut microbiota is considered to be a critical determinant of human health and longevity. Here we show that centenarians (average 107 yo) have a distinct gut microbiome enriched in microbes capable of generating unique secondary bile acids, including iso-, 3-oxo-, and isoallo-lithocholic acid (LCA), as compared to elderly (85-89 yo) and young (21-55 yo) controls. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from a centenarian’s faecal microbiota, we identified Parabacteroides merdae and Odoribacteraceae strains as effective producers of isoalloLCA. Furthermore, we generated and tested mutant strains of P. merdae to show that the enzymes 5α-reductase (5AR) and 3β-hydroxysteroid dehydrogenase (3βHSDH) were responsible for isoalloLCA production. This secondary bile acid derivative exerted the most potent antimicrobial effects among the tested bile acid compounds against gram-positive (but not gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and vancomycin-resistant Enterococcus faecium. These findings suggest that specific bile acid metabolism may be involved in reducing the risk of pathobiont infection, thereby potentially contributing to longevity.


2020 ◽  
Author(s):  
A.D. Reed ◽  
M.A. Nethery ◽  
A. Stewart ◽  
R. Barrangou ◽  
C.M. Theriot

AbstractClostridioides difficile is one of the leading causes of antibiotic-associated diarrhea. Gut microbiota-derived secondary bile acids and commensal Clostridia that encode the bile acid inducible (bai) operon are associated with protection from C. difficile infection (CDI), although the mechanism is not known. In this study we hypothesized that commensal Clostridia are important for providing colonization resistance against C. difficile due to their ability to produce secondary bile acids, as well as potentially competing against C. difficile for similar nutrients. To test this hypothesis, we examined the ability of four commensal Clostridia encoding the bai operon (C. scindens VPI 12708, C. scindens ATCC 35704, C. hiranonis, and C. hylemonae) to convert CA to DCA in vitro, and if the amount of DCA produced was sufficient to inhibit growth of a clinically relevant C. difficile strain. We also investigated the competitive relationship between these commensals and C. difficile using an in vitro co-culture system. We found that inhibition of C. difficile growth by commensal Clostridia supplemented with CA was strain-dependent, correlated with the production of ∼2 mM DCA, and increased expression of bai operon genes. We also found that C. difficile was able to outcompete all four commensal Clostridia in an in vitro co-culture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics. Future studies dissecting the regulation of the bai operon in vitro and in vivo and how this affects CDI will be important.ImportanceCommensal Clostridia encoding the bai operon such as C. scindens have been associated with protection against CDI, however the mechanism for this protection is unknown. Herein, we show four commensal Clostridia that encode the bai operon effect C. difficile growth in a strain-dependent manner, with and without the addition of cholate. Inhibition of C. difficile by commensals correlated with the efficient conversion of cholate to deoxycholate, a secondary bile acid that inhibits C. difficile germination, growth, and toxin production. Competition studies also revealed that C. difficile was able to outcompete the commensals in an in vitro co-culture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics.


2020 ◽  
Vol 202 (11) ◽  
Author(s):  
A. D. Reed ◽  
M. A. Nethery ◽  
A. Stewart ◽  
R. Barrangou ◽  
C. M. Theriot

ABSTRACT Clostridioides difficile is one of the leading causes of antibiotic-associated diarrhea. Gut microbiota-derived secondary bile acids and commensal Clostridia that carry the bile acid-inducible (bai) operon are associated with protection from C. difficile infection (CDI), although the mechanism is not known. In this study, we hypothesized that commensal Clostridia are important for providing colonization resistance against C. difficile due to their ability to produce secondary bile acids, as well as potentially competing against C. difficile for similar nutrients. To test this hypothesis, we examined the abilities of four commensal Clostridia carrying the bai operon (Clostridium scindens VPI 12708, C. scindens ATCC 35704, Clostridium hiranonis, and Clostridium hylemonae) to convert cholate (CA) to deoxycholate (DCA) in vitro, and we determined whether the amount of DCA produced was sufficient to inhibit the growth of a clinically relevant C. difficile strain. We also investigated the competitive relationships between these commensals and C. difficile using an in vitro coculture system. We found that inhibition of C. difficile growth by commensal Clostridia supplemented with CA was strain dependent, correlated with the production of ∼2 mM DCA, and increased the expression of bai operon genes. We also found that C. difficile was able to outcompete all four commensal Clostridia in an in vitro coculture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics. Future studies dissecting the regulation of the bai operon in vitro and in vivo and how this affects CDI will be important. IMPORTANCE Commensal Clostridia carrying the bai operon, such as C. scindens, have been associated with protection against CDI; however, the mechanism for this protection is unknown. Herein, we show four commensal Clostridia that carry the bai operon and affect C. difficile growth in a strain-dependent manner, with and without the addition of cholate. Inhibition of C. difficile by commensals correlated with the efficient conversion of cholate to deoxycholate, a secondary bile acid that inhibits C. difficile germination, growth, and toxin production. Competition studies also revealed that C. difficile was able to outcompete the commensals in an in vitro coculture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S891-S891
Author(s):  
Cheleste M Thorpe ◽  
Xi Qian ◽  
Karin Yanagi ◽  
Anne Kane ◽  
Nicholas Alden ◽  
...  

Abstract Background Secondary bile acid production by a diverse commensal flora may be a critical factor in preventing recurrence of Clostridioides difficile infection (CDI). Key enzymes involved are bacterial-encoded bile salt hydrolases (BSHs), felt to be “gatekeepers” to secondary bile acid synthesis. Ridinilazole, a novel narrow-spectrum drug for CDI, demonstrated superior sustained clinical response compared with vancomycin in Phase 2. Longitudinal sampling during this trial allowed for assessment of metabolites differentially present in stools during/after therapy with either broad or narrow-spectrum anti-CDI agent. Previous work characterizing subject’s fecal microbiota in this trial showed that unlike vancomycin, ridinilazole has little effect on commensal flora during and after therapy. We hypothesized that ridinilazole’s microbiota-preserving effect is associated with lack of accumulation of conjugated primary bile acids and/or reaccumulation/persistence of secondary bile acids over the course of CDI treatment, when compared with vancomycin-treated subjects. Furthermore, we hypothesized that we would observe correlations between bile acid profiles and predicted BSH gene abundances. Methods Sequential stool samples were obtained from 44 subjects treated with either ridinilazole or vancomycin (22 in each arm), ranging from time of CDI diagnosis, at end-of-therapy, and up to 40 days after diagnosis. Bile acids were quantitated by liquid chromatography-mass spectrometry. Using the PICRUSt algorithm, metagenomic predictions of BSH gene abundances were performed. Results Stool bile acid compositions differed between ridinilazole-treated and vancomycin-treated subjects at end-of-therapy. In vancomycin-treated subjects, stool composition became dominated by conjugated primary bile acids and decreased levels of secondary bile acids compared with baseline; the ratio of stool conjugated bile acids to secondary bile acids significantly predicted treatment arm. This ratio was also associated with predicted BSH gene abundance in ridinilazole-treated subjects. Conclusion Microbiota-preserving CDI treatment with ridinilazole preserves bile acid composition, which may decrease likelihood of recurrence. Disclosures All authors: No reported disclosures.


Author(s):  
Jiake Yu ◽  
Hu Zhang ◽  
Liya Chen ◽  
Yufei Ruan ◽  
Yiping Chen ◽  
...  

Children with nonalcoholic fatty liver disease (NAFLD) display an altered gut microbiota compared with healthy children. However, little is known about the fecal bile acid profiles and their association with gut microbiota dysbiosis in pediatric NAFLD. A total of 68 children were enrolled in this study, including 32 NAFLD patients and 36 healthy children. Fecal samples were collected and analyzed by metagenomic sequencing to determine the changes in the gut microbiota of children with NAFLD, and an ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system was used to quantify the concentrations of primary and secondary bile acids. The associations between the gut microbiota and concentrations of primary and secondary bile acids in the fecal samples were then analyzed. We found that children with NAFLD exhibited reduced levels of secondary bile acids and alterations in bile acid biotransforming-related bacteria in the feces. Notably, the decrease in Eubacterium and Ruminococcaceae bacteria, which express bile salt hydrolase and 7α-dehydroxylase, was significantly positively correlated with the level of fecal lithocholic acid (LCA). However, the level of fecal LCA was negatively associated with the abundance of the potential pathogen Escherichia coli that was enriched in children with NAFLD. Pediatric NAFLD is characterized by an altered profile of gut microbiota and fecal bile acids. This study demonstrates that the disease-associated gut microbiota is linked with decreased concentrations of secondary bile acids in the feces. The disease-associated gut microbiota likely inhibits the conversion of primary to secondary bile acids.


2020 ◽  
Vol 318 (2) ◽  
pp. G322-G335
Author(s):  
Kent A. Willis ◽  
Charles K. Gomes ◽  
Prahlad Rao ◽  
Dejan Micic ◽  
E. Richard Moran ◽  
...  

Bile acid receptors regulate the metabolic and immune functions of circulating enterohepatic bile acids. This process is disrupted by administration of parenteral nutrition (PN), which may induce progressive hepatic injury for unclear reasons, especially in the newborn, leading to PN-associated liver disease. To explore the role of bile acid signaling on neonatal hepatic function, we initially observed that Takeda G protein receptor 5 (TGR5)-specific bile acids were negatively correlated with worsening clinical disease markers in the plasma of human newborns with prolonged PN exposure. To test our resulting hypothesis that TGR5 regulates critical liver functions to PN exposure, we used TGR5 receptor deficient mice (TGR5−/−). We observed PN significantly increased liver weight, cholestasis, and serum hepatic stress enzymes in TGR5−/− mice compared with controls. Mechanistically, PN reduced bile acid synthesis genes in TGR5−/−. Serum bile acid composition revealed that PN increased unconjugated primary bile acids and secondary bile acids in TGR5−/− mice, while increasing conjugated primary bile acid levels in TGR5-competent mice. Simultaneously, PN elevated hepatic IL-6 expression and infiltrating macrophages in TGR5−/− mice. However, the gut microbiota of TGR5−/− mice compared with WT mice following PN administration displayed highly elevated levels of Bacteroides and Parabacteroides, and possibly responsible for the elevated levels of secondary bile acids in TGR5−/− animals. Intestinal bile acid transporters expression was unchanged. Collectively, this suggests TGR5 signaling specifically regulates fundamental aspects of liver bile acid homeostasis during exposure to PN. Loss of TGR5 is associated with biochemical evidence of cholestasis in both humans and mice on PN. NEW & NOTEWORTHY Parenteral nutrition is associated with deleterious metabolic outcomes in patients with prolonged exposure. Here, we demonstrate that accelerated cholestasis and parental nutrition-associated liver disease (PNALD) may be associated with deficiency of Takeda G protein receptor 5 (TGR5) signaling. The microbiome is responsible for production of secondary bile acids that signal through TGR5. Therefore, collectively, these data support the hypothesis that a lack of established microbiome in early life or under prolonged parenteral nutrition may underpin disease development and PNALD.


1983 ◽  
Vol 84 (5) ◽  
pp. 969-977 ◽  
Author(s):  
Norbert F. Breuer ◽  
David S. Rampton ◽  
Anthony Tammar ◽  
Gerard M. Murphy ◽  
R.Hermon Dowling

2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Lien Van den Bossche ◽  
Pieter Hindryckx ◽  
Lindsey Devisscher ◽  
Sarah Devriese ◽  
Sophie Van Welden ◽  
...  

ABSTRACT The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes. Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease.


2021 ◽  
Author(s):  
Donggi Paik ◽  
Lina Yao ◽  
Yancong Zhang ◽  
Sena Bae ◽  
Gabriel D. D'Agostino ◽  
...  

The microbiota plays a pivotal role in gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17a (TH17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits TH17 cell differentiation. While it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown. Furthermore, it was not clear whether 3-oxoLCA and other immunomodulatory bile acids are associated with gut inflammatory pathologies in humans. Using a high-throughput screen, we identified human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Like 3-oxoLCA, isoLCA suppressed TH17 differentiation by inhibiting RORγt (retinoic acid receptor-related orphan nuclear receptor γt), a key TH17 cell-promoting transcription factor. Levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase (3α-HSDH) genes required for their biosynthesis were significantly reduced in patients with inflammatory bowel diseases (IBD). Moreover, levels of these bile acids were inversely correlated with expression of TH17 cell-associated genes. Overall, our data suggest that bacterially produced TH17 cell-inhibitory bile acids may reduce the risk of autoimmune and inflammatory disorders such as IBD.


Sign in / Sign up

Export Citation Format

Share Document