scholarly journals PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection

2020 ◽  
Vol 117 (8) ◽  
pp. 4292-4299 ◽  
Author(s):  
Se Jin Im ◽  
Bogumila T Konieczny ◽  
William H. Hudson ◽  
David Masopust ◽  
Rafi Ahmed

The migratory patterns of virus-specific CD8 T cells during chronic viral infection are not well understood. To address this issue, we have done parabiosis experiments during chronic lymphocytic choriomeningitis virus (LCMV) infection of mice. We found that despite the high frequency of virus-specific CD8 T cells in both lymphoid and nonlymphoid tissues there was minimal migration of virus-specific CD8 T cells between the chronically infected conjoined parabiont mice. This was in contrast to parabionts between mice that had undergone an acute LCMV infection where virus-specific CD8 T cells established equilibrium demonstrating circulation of memory T cells generated after viral clearance. We have identified a population of PD-1+ TCF1+CXCR5+Tim-3- stemlike virus-specific CD8 T cells that reside in lymphoid tissues and act as resource cells for maintaining the T cell response during chronic infection. These are the cells that proliferate and give rise to the more terminally differentiated PD-1+ CXCR5-Tim-3+ CD8 T cells. Both the stemlike CD8 T cells and their terminally differentiated progeny showed minimal migration during chronic infection and the few LCMV-specific CD8 T cells that were present in circulation were the recently emerging progeny from the stemlike CD8 T cells. The PD-1+ TCF1+CXCR5+ stemlike CD8 T cells were truly resident in lymphoid tissues and did not circulate in the blood. We propose that this residency in specialized niches within lymphoid tissues is a key aspect of their biology and is essential for maintaining their quiescence and stemlike program under conditions of a chronic viral infection.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2280-2280
Author(s):  
Tobias A.W. Holderried ◽  
Hye-Jung Kim ◽  
Philipp A Lang ◽  
Harvey Cantor

Abstract Recent findings have shown that a small subset of IL-15 dependent CD8+ regulatory T cells is essential for maintenance of self- tolerance and prevention of autoimmune disease in mice (Kim et al., Nature 2010). These CD8+ T cells target CD4+ follicular T helper (TFH) cells through recognition of the murine class Ib MHC molecule Qa-1 (HLA-E in man), resulting in perforin-dependent elimination of target cells and diminished antibody production in the steady state and during disease. This analysis was based on generation of Qa-1 knock-in mice (D227K mice) that harbor a single Qa-1 D→K amino acid exchange point mutation at position 227 that abrogates binding of Qa-1/peptide to the CD8/TCR complex. B6.Qa-1 D227K mutant mice develop severe autoimmune disease marked by generation of autoantibodies to multiple tissues, lymphocyte infiltration into non-lymphoid tissues and lethal glomerulonephritis. Qa-1-restricted CD8+ Treg are characterized by the CD44+CD122+Ly49+ phenotype (Kim et al., PNAS 2011). Here, we analyzed the contribution of CD8+ Treg to modulation of the anti-viral immune response. Virus-specific CD8+ cytotoxic T cells are of central importance for successful control of the Lymphocytic Choriomeningitis Virus (LCMV). LCMV clone 13, however, a genetic variant of LCMV Armstrong, persists in the host and chronic antigen exposure leads to exhaustion of CD8+ T cells and continuous tissue inflammation. The contribution of CD8+ Treg in the anti-viral immune response to acute and chronic viral infection remained elusive so far. We found that CD8+ Treg not only control self-tolerance but also diminish the immune response to viral infection. By comparing wild-type and D227K mutant mice after infection with LCMV Armstrong or LCMV clone 13, we observed in both cases reduced effector CD8+ T cell responses. This was true for polyclonal CD44+CD62L– CD8+ T cells as well as LCMV-specific gp33+ effector CD8+ T cells. During acute infection KLRG1+CD127-CD44+CD62L- cells (short-lived effector CD8+ cells) (Joshi et al., Immunity 2007) were particularly diminished as well as effector cytokines in wild-type mice compared to D227K mice. In contrast, increased effector responses in D227K mice resulted in enhanced control of virus and reduced inflammation of tissues. During chronic infection with LCMV, wild-type mice become severely ill and present with a pronounced clinical phenotype. Increased effector CD8+ T cell immune responses in D227K mice resulted in dramatic alleviation of disease. During late stage of chronic infection, D227K mice showed enhanced virus control and reduced tissue pathology compared with wild-type mice. Interestingly, expression of inhibitory receptors such as PD-1, 2B4 and LAG3 were increased in wild-type mice whereas activating receptors such as NKG2D and KLRG1 were increased in D227K mice, resulting in a memory phenotype in D227K mice compared with exhausted CD8+ T cells in wild-type mice. Adoptive transfer experiments revealed that CD8+ Treg directly suppress CD8+ target cells and thereby inhibit induction of a robust anti-viral response. Taken together, we show that Qa-1-restricted CD8+ Treg have a direct inhibitory effect on effector CD8+ T cells during acute and chronic viral infection, resulting in a more violent disease and diminished recovery. These data suggest that depletion or inactivation of CD8+ Treg represents a potentially effective strategy to enhance anti-viral immunity. Disclosures: No relevant conflicts of interest to declare.


1998 ◽  
Vol 187 (11) ◽  
pp. 1903-1920 ◽  
Author(s):  
Daniel Binder ◽  
Maries F. van den Broek ◽  
David Kägi ◽  
Horst Bluethmann ◽  
Jörg Fehr ◽  
...  

Aplastic anemia may be associated with persistent viral infections that result from failure of the immune system to control virus. To evaluate the effects on hematopoiesis exerted by sustained viral replication in the presence of activated T cells, blood values and bone marrow (BM) function were analyzed in chronic infection with lymphocytic choriomeningitis virus (LCMV) in perforin-deficient (P0/0) mice. These mice exhibit a vigorous T cell response, but are unable to eliminate the virus. Within 14 d after infection, a progressive pancytopenia developed that eventually was lethal due to agranulocytosis and thrombocytopenia correlating with an increasing loss of morphologically differentiated, pluripotent, and committed progenitors in the BM. This hematopoietic disease caused by a noncytopathic chronic virus infection was prevented by depletion of CD8+, but not of CD4+, T cells and accelerated by increasing the frequency of LCMV-specific CD8+ T cells in T cell receptor (TCR) transgenic (tg) mice. LCMV and CD8+ T cells were found only transiently in the BM of infected wild-type mice. In contrast, increased numbers of CD8+ T cells and LCMV persisted at high levels in antigen-presenting cells of infected P0/0 and P0/0 × TCR tg mice. No cognate interaction between the TCR and hematopoietic progenitors presenting either LCMV-derived or self-antigens on the major histocompatibility complex was found, but damage to hematopoiesis was due to excessive secretion and action of tumor necrosis factor (TNF)/lymphotoxin (LT)-α and interferon (IFN)-γ produced by CD8+ T cells. This was studied in double-knockout mice that were genetically deficient in perforin and TNF receptor type 1. Compared with P0/0 mice, these mice had identical T cell compartments and T cell responses to LCMV, yet they survived LCMV infection and became life-long virus carriers. The numbers of hematopoietic precursors in the BM were increased compared with P0/0 mice after LCMV infection, although transient blood disease was still noticed. This residual disease activity was found to depend on IFN-γ–producing LCMV-specific T cells and the time point of hematopoietic recovery paralleled disappearance of these virus-specific, IFN-γ–producing CD8+ T cells. Thus, in the absence of IFN-γ and/or TNF/LT-α, exhaustion of virus-specific T cells was not hampered.


1999 ◽  
Vol 73 (3) ◽  
pp. 2527-2536 ◽  
Author(s):  
Mehrdad Matloubian ◽  
M. Suresh ◽  
Alison Glass ◽  
Marisa Galvan ◽  
Kit Chow ◽  
...  

ABSTRACT Cytotoxic T cells secrete perforin to kill virus-infected cells. In this study we show that perforin also plays a role in immune regulation. Perforin-deficient (perf −/−) mice chronically infected with lymphocytic choriomeningitis virus (LCMV) contained greater numbers of antiviral T cells compared to persistently infected +/+ mice. The enhanced expansion was seen in both CD4 and CD8 T cells, but the most striking difference was in the numbers of LCMV-specific CD8 T cells present in infected perf −/− mice. Persistent LCMV infection of +/+ mice results in both deletion and anergy of antigen-specific CD8 T cells, and our results show that this peripheral “exhaustion” of activated CD8 T cells occurred less efficiently in perf −/− mice. This excessive accumulation of activated CD8 T cells resulted in immune-mediated damage in persistently infected perf −/− mice; ∼50% of these mice died within 2 to 4 weeks, and mortality was fully reversed by in vivo depletion of CD8 T cells. This finding highlights an interesting dichotomy between the role of perforin in viral clearance and immunopathology; perforin-deficient CD8 T cells were unable to clear the LCMV infection but were capable of causing immune-mediated damage. Finally, this study shows that perforin also plays a role in regulating T-cell-mediated autoimmunity. Mice that were deficient in both perforin and Fas exhibited a striking acceleration of the spontaneous lymphoproliferative disease seen in Fas-deficient (lpr) mice. Taken together, these results show that the perforin-mediated pathway is involved in downregulating T-cell responses during chronic viral infection and autoimmunity and that perforin and Fas act independently as negative regulators of activated T cells.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1189
Author(s):  
David G. Brooks ◽  
Antoinette Tishon ◽  
Michael B. A. Oldstone ◽  
Dorian B. McGavern

During chronic viral infections, CD8 T cells rapidly lose antiviral and immune-stimulatory functions in a sustained program termed exhaustion. In addition to this loss of function, CD8 T cells with the highest affinity for viral antigen can be physically deleted. Consequently, treatments designed to restore function to exhausted cells and control chronic viral replication are limited from the onset by the decreased breadth of the antiviral T cell response. Yet, it remains unclear why certain populations of CD8 T cells are deleted while others are preserved in an exhausted state. We report that CD8 T cell deletion during chronic viral infection can be prevented by therapeutically lowering viral replication early after infection. The initial resistance to deletion enabled long-term maintenance of antiviral cytolytic activity of the otherwise deleted high-affinity CD8 T cells. In combination with decreased virus titers, CD4 T cell help and prolonged interactions with costimulatory molecules B7-1/B7-2 were required to prevent CD8 T cell deletion. Thus, therapeutic strategies to decrease early virus replication could enhance virus-specific CD8 T cell diversity and function during chronic infection.


2019 ◽  
Vol 116 (28) ◽  
pp. 14113-14118 ◽  
Author(s):  
Rohit R. Jadhav ◽  
Se Jin Im ◽  
Bin Hu ◽  
Masao Hashimoto ◽  
Peng Li ◽  
...  

We have recently defined a novel population of PD-1 (programmed cell death 1)+ TCF1 (T cell factor 1)+ virus-specific CD8 T cells that function as resource cells during chronic LCMV infection and provide the proliferative burst seen after PD-1 blockade. Such CD8 T cells have been found in other chronic infections and also in cancer in mice and humans. These CD8 T cells exhibit stem-like properties undergoing self-renewal and also differentiating into the terminally exhausted CD8 T cells. Here we compared the epigenetic signature of stem-like CD8 T cells with exhausted CD8 T cells. ATAC-seq analysis showed that stem-like CD8 T cells had a unique signature implicating activity of HMG (TCF) and RHD (NF-κB) transcription factor family members in contrast to higher accessibility to ETS and RUNX motifs in exhausted CD8 T cells. In addition, regulatory regions of the transcription factorsTcf7andId3were more accessible in stem-like cells whereasPrdm1andId2were more accessible in exhausted CD8 T cells. We also compared the epigenetic signatures of the 2 CD8 T cell subsets from chronically infected mice with effector and memory CD8 T cells generated after an acute LCMV infection. Both CD8 T cell subsets generated during chronic infection were strikingly different from CD8 T cell subsets from acute infection. Interestingly, the stem-like CD8 T cell subset from chronic infection, despite sharing key functional properties with memory CD8 T cells, had a very distinct epigenetic program. These results show that the chronic stem-like CD8 T cell program represents a specific adaptation of the T cell response to persistent antigenic stimulation.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2018 ◽  
Vol 115 (18) ◽  
pp. 4749-4754 ◽  
Author(s):  
Eunseon Ahn ◽  
Koichi Araki ◽  
Masao Hashimoto ◽  
Weiyan Li ◽  
James L. Riley ◽  
...  

PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti–PD-L1 or anti–PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.


Sign in / Sign up

Export Citation Format

Share Document