scholarly journals Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N2 fixation in nodules

2020 ◽  
Vol 117 (18) ◽  
pp. 9822-9831 ◽  
Author(s):  
Marcela A. Mendoza-Suárez ◽  
Barney A. Geddes ◽  
Carmen Sánchez-Cañizares ◽  
Ricardo H. Ramírez-González ◽  
Charlotte Kirchhelle ◽  
...  

Legumes tend to be nodulated by competitive rhizobia that do not maximize nitrogen (N2) fixation, resulting in suboptimal yields. Rhizobial nodulation competitiveness and effectiveness at N2 fixation are independent traits, making their measurement extremely time-consuming with low experimental throughput. To transform the experimental assessment of rhizobial competitiveness and effectiveness, we have used synthetic biology to develop reporter plasmids that allow simultaneous high-throughput measurement of N2 fixation in individual nodules using green fluorescent protein (GFP) and barcode strain identification (Plasmid ID) through next generation sequencing (NGS). In a proof-of-concept experiment using this technology in an agricultural soil, we simultaneously monitored 84 different Rhizobium leguminosarum strains, identifying a supercompetitive and highly effective rhizobial symbiont for peas. We also observed a remarkable frequency of nodule coinfection by rhizobia, with mixed occupancy identified in ∼20% of nodules, containing up to six different strains. Critically, this process can be adapted to multiple Rhizobium-legume symbioses, soil types, and environmental conditions to permit easy identification of optimal rhizobial inoculants for field testing to maximize agricultural yield.

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 177
Author(s):  
Ryo Ikemori ◽  
Ikuko Aoyama ◽  
Tadahiro Sasaki ◽  
Hirono Takabayashi ◽  
Kazutoshi Morisada ◽  
...  

Severe fever with thrombocytopenia syndrome (SFTS) is a novel tick-borne infectious disease, therefore, the information on the whole genome of the SFTS virus (SFTSV) is still limited. This study demonstrates a nearly whole genome of the SFTSV identified in Osaka in 2017 and 2018 by next-generation sequencing (NGS). The evolutionary lineage of two genotypes, C5 and J1, was identified in Osaka. The first case in Osaka belongs to suspect reassortment (L:C5, M:C5, S:C4), the other is genotype J1 (L: J1, M: J1, S: J1) according to the classification by a Japanese group. C5 was identified in China, indicating that C5 identified in this study may be transmitted by birds between China and Japan. This study revealed that different SFTSV genotypes were distributed in two local areas, suggesting the separate or focal transmission patterns in Osaka.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6552 ◽  
Author(s):  
Irina V. Leppyanen ◽  
Anna N. Kirienko ◽  
Elena A. Dolgikh

In this study, we demonstrated the successful transformation of two pea (Pisum sativumL.) cultivars usingAgrobacterium rhizogenes, whereby transgenic roots in the resulting composite plants showed expression of the gene encoding the green fluorescent protein. Subsequent to infection withA. rhizogenes, approximately 70%–80% of pea seedlings developed transgenic hairy roots. We found out that the transgenic roots can be efficiently nodulated byRhizobium leguminosarumbv.viciaeand infected by the arbuscular mycorrhizal (AM) fungusRhizophagus irregularis. The morphology of nodules in the transgenic roots was found to be identical to that of nodules observed in wild-type roots, and we also observed the effective induction of markers typical of the symbiotic association with AM fungi. The convenient protocol for highly efficientA. rhizogenes-mediated transformation developed in this study would be a rapid and effective tool for investigating those genes involved in the development of the two types of symbioses found in pea plants.


2019 ◽  
Author(s):  
Chi-Yun Lin ◽  
Matthew Romei ◽  
Luke Oltrogge ◽  
Irimpan Mathews ◽  
Steven Boxer

Green fluorescent protein (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all the observed strong correlations among photophysical properties; related subtopics are extensively discussed in Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue this model should also be generally applicable to both biological and non-biological polymethine dyes.<br>


2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


Author(s):  
Altuğ Koç ◽  
Elçin Bora ◽  
Tayfun Cinleti ◽  
Gizem Yıldız ◽  
Meral Torun Bayram ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document