scholarly journals Crop rotation mitigates impacts of corn rootworm resistance to transgenic Bt corn

2020 ◽  
Vol 117 (31) ◽  
pp. 18385-18392
Author(s):  
Yves Carrière ◽  
Zachary Brown ◽  
Serkan Aglasan ◽  
Pierre Dutilleul ◽  
Matthew Carroll ◽  
...  

Transgenic crops that produce insecticidal proteins fromBacillus thuringiensis(Bt) can suppress pests and reduce insecticide sprays, but their efficacy is reduced when pests evolve resistance. Although farmers plant refuges of non-Bt host plants to delay pest resistance, this tactic has not been sufficient against the western corn rootworm,Diabrotica virgifera virgifera. In the United States, some populations of this devastating pest have rapidly evolved practical resistance to Cry3 toxins and Cry34/35Ab, the only Bt toxins in commercially available corn that kill rootworms. Here, we analyzed data from 2011 to 2016 on Bt corn fields producing Cry3Bb alone that were severely damaged by this pest in 25 crop-reporting districts of Illinois, Iowa, and Minnesota. The annual mean frequency of these problem fields was 29 fields (range 7 to 70) per million acres of Cry3Bb corn in 2011 to 2013, with a cost of $163 to $227 per damaged acre. The frequency of problem fields declined by 92% in 2014 to 2016 relative to 2011 to 2013 and was negatively associated with rotation of corn with soybean. The effectiveness of corn rotation for mitigating Bt resistance problems did not differ significantly between crop-reporting districts with versus without prevalent rotation-resistant rootworm populations. In some analyses, the frequency of problem fields was positively associated with planting of Cry3 corn and negatively associated with planting of Bt corn producing both a Cry3 toxin and Cry34/35Ab. The results highlight the central role of crop rotation for mitigating impacts ofD. v. virgiferaresistance to Bt corn.

2020 ◽  
Author(s):  
Zixiao Zhao ◽  
Christine G. Elsik ◽  
Bruce E. Hibbard ◽  
Kent S. Shelby

AbstractBackgroundAlternative splicing is one of the major mechanisms that increases transcriptome diversity in eukaryotes, including insect species that have gained resistance to pesticides and Bt toxins. In western corn rootworm (Diabrotica virgifera virgifera LeConte), neither alternative splicing nor its role in resistance to Bt toxins has been studied.ResultsTo investigate the mechanisms of Bt resistance we carried out single-molecule real-time (SMRT) transcript sequencing and Iso-seq analysis on resistant, eCry3.1Ab-selected and susceptible, unselected, western corn rootworm neonate midguts which fed on seedling maize with and without eCry3.1Ab for 12 and 24 hours. We present transcriptome-wide alternative splicing patterns of western corn rootworm midgut in response to feeding on eCry3.1Ab-expressing corn using a comprehensive approach that combines both RNA-seq and SMRT transcript sequencing techniques. We found that 67.73% of multi-exon genes are alternatively spliced, which is consistent with the high transposable element content of the genome. One of the alternative splicing events we identified was a novel peritrophic matrix protein with two alternative splicing isoforms. Analysis of differential exon usage between resistant and susceptible colonies showed that in eCry3.1Ab-resistant western corn rootworm, expression of one isoform was significantly higher than in the susceptible colony, while no significant differences between colonies were observed with the other isoform.ConclusionOur results provide the first survey of alternative splicing in western corn rootworm and suggest that the observed alternatively spliced isoforms of peritrophic matrix protein may be associated with eCry3.1Ab resistance in western corn rootworm.


Author(s):  
Joseph L Spencer ◽  
Timothy R Mabry ◽  
Eli Levine ◽  
Scott A Isard

Abstract Western corn rootworm, Diabrotica virgifera virgifera LeConte, biology is tied to the continuous availability of its host (corn, Zea mays L.). Annual rotation of corn with a nonhost, like soybean (Glycine max (L.) Merrill) was a reliable tactic to manage western corn rootworm. Behavioral resistance to annual crop rotation (rotation resistance) allowed some eastern U.S. Corn Belt populations to circumvent rotation by laying eggs in soybean and in cornfields. When active in soybean, rotation-resistant adults commonly consume foliage, in spite of detrimental effects on beetle survival. Rotation-resistant beetle activity in soybean is enabled by the expression of certain proteinases and an adapted gut microbiota that provide limited protection from soybean antiherbivore defenses. We investigated the effects of corn and soybean herbivory on rotation-resistant female survival and initiation of flight using mortality assays and wind tunnel flight tests. Among field-collected females tested with mortality assays, beetles from collection sites in a cornfield survived longer than those from collection sites in a soybean field. However, reduced survival due to soybean herbivory could be restored by consuming corn tissues. Field-collected beetles that fed on a soybean tissue laboratory diet or only water were more likely to fly in a wind tunnel than corn-feeding beetles. Regardless of collection site and laboratory diet, 90.5% of beetles that flew oriented their flights upwind. Diet-related changes in the probability of flight provide a proximate mechanism for interfield movement that facilitates restorative feeding and the survival of females previously engaged in soybean herbivory. Rotation-resistant western corn rootworm females feeding on soybean tissues experience reduced survival in mortality assays and display increased flight probability (which may facilitate flight back to a cornfield where consumption of host tissues improves survival potential and facilitates maturation of eggs). The consequences of soybean herbivory provide a proximal mechanism for behavioral resistance to crop rotation. Increased egg-laying probability while feeding on soybean tissues, facilitation of egg maturation while feeding on corn tissues, and interfield movement are previously documented consequences.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiping Niu ◽  
Adane Kassa ◽  
James Hasler ◽  
Samantha Griffin ◽  
Claudia Perez-Ortega ◽  
...  

Abstract Western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is a serious insect pest in the major corn growing areas of North America and in parts of Europe. WCR populations with resistance to Bacillus thuringiensis (Bt) toxins utilized in commercial transgenic traits have been reported, raising concerns over their continued efficacy in WCR management. Understanding the modes of action of Bt toxins is important for WCR control and resistance management. Although different classes of proteins have been identified as Bt receptors for lepidopteran insects, identification of receptors in WCR has been limited with no reports of functional validation. Our results demonstrate that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to the cytotoxic effects of Cry3A toxins. The result was further validated using knockdown of DvABCB1 by RNAi which rendered WCR larvae insensitive to a Cry3A toxin. However, silencing of DvABCB2 which is highly homologous to DvABCB1 at the amino acid level, did not reduce the sensitivity of WCR larvae to a Cry3A toxin. Furthermore, our functional studies corroborate different mode-of-actions for other insecticidal proteins including Cry34Ab1/35Ab1, Cry6Aa1, and IPD072Aa against WCR. Finally, reduced expression and alternatively spliced transcripts of DvABCB1 were identified in a mCry3A-resistant strain of WCR. Our results provide the first clear demonstration of a functional receptor in the molecular mechanism of Cry3A toxicity in WCR and confirmed its role in the mechanism of resistance in a mCry3A resistant strain of WCR.


1993 ◽  
Vol 28 (1) ◽  
pp. 136-141 ◽  
Author(s):  
Roger R. Youngman ◽  
Eric R. Day

The discovery of western corn rootworm beetles, Diabrotica virgifera virgifera LeConte, in a southwest Virginia corn field in 1985 prompted annual surveys of corn fields in an average of 28 counties across the state from 1987 to 1992. All counties included in the annual surveys were representative of the major corn-growing regions of Virginia. Survey results indicated that western corn rootworm beetles spread rapidly throughout most of the western and central continuous corn-growing regions of the state. In the eastern and southeastern corn-growing regions of the state, where crop rotation is widely practiced, detections of western corn rootworm beetles were less common and typically involved only one to two counties per year from 1987 to 1992.


1991 ◽  
Vol 123 (3) ◽  
pp. 707-710 ◽  
Author(s):  
Y.S. Xie ◽  
D. Gagnon ◽  
J.T. Arnason ◽  
B.J.R. Philogène ◽  
J.D.H. Lambert ◽  
...  

Corn rootworm (Diabrotica spp., Coleoptera: Chrysomelidae) is a serious pest insect of corn production. It is estimated that farmers in the United States have losses of over $1 billion each year as a result of crop damage and treatment costs for this pest (Metcalf 1986). Chemical control is the main method of suppressing corn rootworm populations and the amount of insecticide used against Diabrotica spp. is greater than for any other pests of corn in the United States (Suguiyama and Carlson 1985). The development of nontoxic and biodegradable alternatives to chemical insecticides is highly desirable.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 171
Author(s):  
Kyle J. Paddock ◽  
Christelle A. M. Robert ◽  
Matthias Erb ◽  
Bruce E. Hibbard

The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 112 ◽  
Author(s):  
Lance J. Meinke ◽  
Dariane Souza ◽  
Blair D. Siegfried

The western corn rootworm, Diabrotica virgifera virgifera LeConte (Dvv) is a significant insect pest of maize in the United States (U.S.). This paper reviews the history of insecticide use in Dvv management programs, Dvv adaptation to insecticides, i.e., field-evolved resistance and associated mechanisms of resistance, plus the current role of insecticides in the transgenic era. In the western U.S. Corn Belt where continuous maize is commonly grown in large irrigated monocultures, broadcast-applied soil or foliar insecticides have been extensively used over time to manage annual densities of Dvv and other secondary insect pests. This has contributed to the sequential occurrence of Dvv resistance evolution to cyclodiene, organophosphate, carbamate, and pyrethroid insecticides since the 1950s. Mechanisms of resistance are complex, but both oxidative and hydrolytic metabolism contribute to organophosphate, carbamate, and pyrethroid resistance facilitating cross-resistance between insecticide classes. History shows that Dvv insecticide resistance can evolve quickly and may persist in field populations even in the absence of selection. This suggests minimal fitness costs associated with Dvv resistance. In the transgenic era, insecticides function primarily as complementary tools with other Dvv management tactics to manage annual Dvv densities/crop injury and resistance over time.


2004 ◽  
Vol 70 (8) ◽  
pp. 4889-4898 ◽  
Author(s):  
James A. Baum ◽  
Chi-Rei Chu ◽  
Mark Rupar ◽  
Gregory R. Brown ◽  
William P. Donovan ◽  
...  

ABSTRACT The western corn rootworm, Diabrotica virgifera virgifera LeConte, is a significant pest of corn in the United States. The development of transgenic corn hybrids resistant to rootworm feeding damage depends on the identification of genes encoding insecticidal proteins toxic to rootworm larvae. In this study, a bioassay screen was used to identify several isolates of the bacterium Bacillus thuringiensis active against rootworm. These bacterial isolates each produce distinct crystal proteins with approximate molecular masses of 13 to 15 kDa and 44 kDa. Insect bioassays demonstrated that both protein classes are required for insecticidal activity against this rootworm species. The genes encoding these proteins are organized in apparent operons and are associated with other genes encoding crystal proteins of unknown function. The antirootworm proteins produced by B. thuringiensis strains EG5899 and EG9444 closely resemble previously described crystal proteins of the Cry34A and Cry35A classes. The antirootworm proteins produced by strain EG4851, designated Cry34Ba1 and Cry35Ba1, represent a new binary toxin. Genes encoding these proteins could become an important component of a sustainable resistance management strategy against this insect pest.


2018 ◽  
Author(s):  
◽  
Man P. Huynh

The western corn rootworm (Coleoptera: Chrysomelidae; Diabrotica virgifera virgifera LeConte) and the northern corn rootworm (Coleoptera: Chrysomelidae; Diabrotica barberi Smith and Lawrence) are highly adaptive insect pests and have developed resistance to most possible management tactics in some regions. Transgenic maize hybrids, the latest control tools, which express insecticidal crystalline toxins from Bacillus thuringiensis (Bt) Berliner, have also faltered due to physiological adaptation of western corn rootworm populations. The United States Environmental Protection Agency has mandated insect resistance management plans for corn rootworms that have been directed toward monitoring the development of resistance to each of the Bt toxins. Toxicity bioassays using artificial diet have proven to be valuable for monitoring resistance to Bt toxins in corn rootworm populations. Currently, several proprietary diet formulations for western corn rootworm larvae that have been developed by each of the maize seed companies are used by industry and public researchers in toxicity bioassays to detect decreases in susceptibility of western corn rootworm populations to Bt proteins. No artificial diet has been developed specifically for northern corn rootworm larvae. Since differences in diet formulations can lead to different results in diet toxicity assays, it is impossible to make diet comparisons between toxicity assays using different artificial diets from individual companies and it may not be possible to determine an accurate picture of the test population's phenotype as it relates to Bt resistance. We report new diet formulations that support improved weight gain, larval development, and survival compared with current diets used in western corn rootworm and northern corn rootworm bioassays. The new formulations were created by using response surface modeling coupled with n-dimensional mixture designs to identify and optimize key ingredients based on integrated evaluation of several life history parameters (i.e., weight, molting, survival) while limiting contamination. The new rootworm formulations supported approximately 97% larval survival and molting and increased larval weight gain after 10 days of feedings compared to other diets used in western corn rootworm and northern corn rootworm bioassays rearing. These new formulations provide a standardized growth medium for western corn rootworm and northern corn rootworm larvae that will facilitate toxicity test comparisons conducted by different working groups and meets all regulatory requirements. We developed an improved diet formulation (WCRMO-1) for western corn rootworm (Chapter 2), which was the optimization of diet ingredients in the only published diet for western corn rootworm larvae. This formulation was also compatible for use with all current Bt proteins targeting western corn rootworm larvae. However, this formulation contains corn root powder, which is not available for purchase, limiting the practical use of the diets. We demonstrated that essential growth factors in corn roots that assist in western corn rootworm growth can be extracted suggesting substituting corn root powder with compounds identified from the extract may be possible (Chapter 3). An improved and accessible diet for western corn rootworm (WCRMO-2) that is comparable with all current diets for western corn rootworm larvae and without corn root powder was created by exploring and characterizing protein ingredients from plant, animal and yeast products (Chapter 4). Lastly, we developed the first artificial diet (NCRMO-1) for northern corn rootworm (Chapter 5) comprised of available ingredients that supports performance of northern corn rootworm larvae better than that of publicly available rootworm formulations.


Sign in / Sign up

Export Citation Format

Share Document