scholarly journals Stiffness of the interface between a colloidal body-centered cubic crystal and its liquid

2020 ◽  
Vol 117 (41) ◽  
pp. 25225-25229
Author(s):  
Hyerim Hwang ◽  
David A. Weitz ◽  
Frans Spaepen

Equilibrium interfaces were established between body-centered cubic (BCC) crystals and their liquid using charged colloidal particles in an electric bottle. By measuring a time series of interfacial positions and computing the average power spectrum, their interfacial stiffness was determined according to the capillary fluctuation method. For the (100) and the (114) interfaces, the stiffnesses were 0.15 and 0.18kBT/σ2(σ: particle diameter), respectively, and were isotropic in the plane of the interface. For comparison, similar charged colloids were used to create an interface between a face-centered cubic (FCC) crystal and its liquid. Its stiffness was significantly larger: 0.26kBT/σ2. This result gives experimental support to the explanations offered for the preferential nucleation of BCC over FCC in metallic alloys.

Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 706
Author(s):  
Yue Su ◽  
Songqin Xia ◽  
Jia Huang ◽  
Qingyuan Liu ◽  
Haocheng Liu ◽  
...  

Recently, the irradiation behaviors of multi-component alloys have stimulated an increasing interest due to their ability to suppress the growth of irradiation defects, though the mostly studied alloys are limited to face centered cubic (fcc) structured multi-component alloys. In this work, two single-phase body centered cubic (bcc) structured multi-component alloys (CrFeV, AlCrFeV) with different lattice distortions were prepared by vacuum arc melting, and the reference of α-Fe was also prepared. After 6 MeV Au ions irradiation to over 100 dpa (displacement per atom) at 500 °C, the bcc structured CrFeV and AlCrFeV exhibited significantly improved irradiation swelling resistance compared to α-Fe, especially AlCrFeV. The AlCrFeV alloy possesses superior swelling resistance, showing no voids compared to α-Fe and CrFeV alloy, and scarce irradiation softening appears in AlCrFeV. Owing to their chemical complexity, it is believed that the multi-component alloys under irradiation have more defect recombination and less damage accumulation. Accordingly, we discuss the origin of irradiation resistance and the Al effect in the studied bcc structured multi-component alloys.


2009 ◽  
Vol 18 (08) ◽  
pp. 1159-1173 ◽  
Author(s):  
CASEY MANN ◽  
JENNIFER MCLOUD-MANN ◽  
RAMONA RANALLI ◽  
NATHAN SMITH ◽  
BENJAMIN MCCARTY

This article concerns the minimal knotting number for several types of lattices, including the face-centered cubic lattice (fcc), two variations of the body-centered cubic lattice (bcc-14 and bcc-8), and simple-hexagonal lattices (sh). We find, through the use of a computer algorithm, that the minimal knotting number in sh is 20, in fcc is 15, in bcc-14 is 13, and bcc-8 is 18.


1976 ◽  
Vol 31 (12) ◽  
pp. 1539-1542 ◽  
Author(s):  
H. M. Ledbetter

Abstract The Poisson ratio υ of a polycrystalline aggregate was calculated for both the face-centered cubic and the body-centered cubic cases. A general two-body central-force interatomatic potential was used. Deviations of υ from 0.25 were verified. A lower value of υ is predicted for the f.c.c. case than for the b.c.c. case. Observed values of υ for twenty-three cubic elements are discussed in terms of the predicted values. Effects of including volume-dependent electron-energy terms in the inter-atomic potential are discussed.


Sign in / Sign up

Export Citation Format

Share Document