scholarly journals A method of incorporating rate constants as kinetic constraints in molecular dynamics simulations

2020 ◽  
Vol 118 (2) ◽  
pp. e2012423118
Author(s):  
Z. Faidon Brotzakis ◽  
Michele Vendruscolo ◽  
Peter G. Bolhuis

From the point of view of statistical mechanics, a full characterization of a molecular system requires an accurate determination of its possible states, their populations, and the respective interconversion rates. Toward this goal, well-established methods increase the accuracy of molecular dynamics simulations by incorporating experimental information about states using structural restraints and about populations using thermodynamics restraints. However, it is still unclear how to include experimental knowledge about interconversion rates. Here, we introduce a method of imposing known rate constants as constraints in molecular dynamics simulations, which is based on a combination of the maximum-entropy and maximum-caliber principles. Starting from an existing ensemble of trajectories, obtained from either molecular dynamics or enhanced trajectory sampling, this method provides a minimally perturbed path distribution consistent with the kinetic constraints, as well as modified free energy and committor landscapes. We illustrate the application of the method to a series of model systems, including all-atom molecular simulations of protein folding. Our results show that by combining experimental rate constants and molecular dynamics simulations, this approach enables the determination of transition states, reaction mechanisms, and free energies. We anticipate that this method will extend the applicability of molecular simulations to kinetic studies in structural biology and that it will assist the development of force fields to reproduce kinetic and thermodynamic observables. Furthermore, this approach is generally applicable to a wide range of systems in biology, physics, chemistry, and material science.

2017 ◽  
Vol 19 (25) ◽  
pp. 16806-16818 ◽  
Author(s):  
M. Doktorova ◽  
D. Harries ◽  
G. Khelashvili

Computational methodology that allows to extract bending rigidity and tilt modulus for a wide range of single and multi-component lipid bilayers from real-space analysis of fluctuations in molecular dynamics simulations.


Langmuir ◽  
2017 ◽  
Vol 33 (38) ◽  
pp. 9934-9943 ◽  
Author(s):  
Sadegh Faramarzi ◽  
Brittany Bonnett ◽  
Carl A. Scaggs ◽  
Ashley Hoffmaster ◽  
Danielle Grodi ◽  
...  

Soft Matter ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. 2942-2956
Author(s):  
Rishabh D. Guha ◽  
Ogheneovo Idolor ◽  
Katherine Berkowitz ◽  
Melissa Pasquinelli ◽  
Landon R. Grace

We investigated the effect of temperature variation on the secondary bonding interactions between absorbed moisture and epoxies with different morphologies using molecular dynamics simulations.


2021 ◽  
Vol 23 (14) ◽  
pp. 8525-8540
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

Ground-state and excited-state molecular dynamics simulations shed light on the rotation mechanism of small, light-driven molecular motors and predict motor performance. How fast can they rotate; how much torque and power can they generate?


2017 ◽  
Vol 19 (10) ◽  
pp. 6909-6920 ◽  
Author(s):  
Tatsuhiko Ohto ◽  
Johannes Hunger ◽  
Ellen H. G. Backus ◽  
Wataru Mizukami ◽  
Mischa Bonn ◽  
...  

Vibrational spectroscopy and molecular simulations revealed the hydrophilicity and hydrophobicity of TMAO in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document