scholarly journals Layer-dependent topological phase in a two-dimensional quasicrystal and approximant

2020 ◽  
Vol 117 (42) ◽  
pp. 26135-26140
Author(s):  
Jeffrey D. Cain ◽  
Amin Azizi ◽  
Matthias Conrad ◽  
Sinéad M. Griffin ◽  
Alex Zettl

The electronic and topological properties of materials are derived from the interplay between crystalline symmetry and dimensionality. Simultaneously introducing “forbidden” symmetries via quasiperiodic ordering with low dimensionality into a material system promises the emergence of new physical phenomena. Here, we isolate a two-dimensional (2D) chalcogenide quasicrystal and approximant, and investigate their electronic and topological properties. The 2D layers of the materials with a composition close to Ta1.6Te, derived from a layered transition metal dichalcogenide, are isolated with standard exfoliation techniques, and investigated with electron diffraction and atomic resolution scanning transmission electron microscopy. Density functional theory calculations and symmetry analysis of the large unit cell crystalline approximant of the quasicrystal, Ta21Te13, reveal the presence of symmetry-protected nodal crossings in the quasicrystalline and approximant phases, whose presence is tunable by layer number. Our study provides a platform for the exploration of physics in quasicrystalline, low-dimensional materials and the interconnected nature of topology, dimensionality, and symmetry in electronic systems.

2020 ◽  
Vol 7 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Xujing Li ◽  
Li Yin ◽  
Zhengxun Lai ◽  
Mei Wu ◽  
Yu Sheng ◽  
...  

Abstract Defects exist ubiquitously in crystal materials, and usually exhibit a very different nature from the bulk matrix. Hence, their presence can have significant impacts on the properties of devices. Although it is well accepted that the properties of defects are determined by their unique atomic environments, the precise knowledge of such relationships is far from clear for most oxides because of the complexity of defects and difficulties in characterization. Here, we fabricate a 36.8° SrRuO3 grain boundary of which the transport measurements show a spin-valve magnetoresistance. We identify its atomic arrangement, including oxygen, using scanning transmission electron microscopy and spectroscopy. Based on the as-obtained atomic structure, the density functional theory calculations suggest that the spin-valve magnetoresistance occurs because of dramatically reduced magnetic moments at the boundary. The ability to manipulate magnetic properties at the nanometer scale via defect control allows new strategies to design magnetic/electronic devices with low-dimensional magnetic order.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yung-Chang Lin ◽  
Sungwoo Lee ◽  
Yueh-Chiang Yang ◽  
Po-Wen Chiu ◽  
Gun-Do Lee ◽  
...  

AbstractInterhalogen compounds (IHCs) are extremely reactive molecules used for halogenation, catalyst, selective etchant, and surface modification. Most of the IHCs are unstable at room temperature especially for the iodine-monofluoride (IF) whose structure is still unknown. Here we demonstrate an unambiguous observation of two-dimensional (2D) IF bilayer grown on the surface of WSe2 by using scanning transmission electron microscopy and electron energy loss spectroscopy. The bilayer IF shows a clear hexagonal lattice and robust epitaxial relationship with the WSe2 substrate. Despite the IF is known to sublimate at −14 °C and has never found as a solid form in the ambient condition, but surprisingly it is found stabilized on a suitable substrate and the stabilized structure is supported by a density functional theory. This 2D form of IHC is actually a byproduct during a chemical vapor deposition growth of WSe2 in the presence of alkali metal halides as a growth promoter and requires immediate surface passivation to sustain. This work points out a great possibility to produce 2D structures that are unexpected to be crystallized or cannot be obtained by a simple exfoliation but can be grown only on a certain substrate.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 732 ◽  
Author(s):  
Takahiro Shimada ◽  
Koichiro Minaguro ◽  
Tao Xu ◽  
Jie Wang ◽  
Takayuki Kitamura

Beyond a ferroelectric critical thickness of several nanometers existed in conventional ferroelectric perovskite oxides, ferroelectricity in ultimately thin dimensions was recently discovered in SnTe monolayers. This discovery suggests the possibility that SnTe can sustain ferroelectricity during further low-dimensional miniaturization. Here, we investigate a ferroelectric critical size of low-dimensional SnTe nanostructures such as nanoribbons (1D) and nanoflakes (0D) using first-principle density-functional theory calculations. We demonstrate that the smallest (one-unit-cell width) SnTe nanoribbon can sustain ferroelectricity and there is no ferroelectric critical size in the SnTe nanoribbons. On the other hand, the SnTe nanoflakes form a vortex of polarization and lose their toroidal ferroelectricity below the surface area of 4 × 4 unit cells (about 25 Å on one side). We also reveal the atomic and electronic mechanism of the absence or presence of critical size in SnTe low-dimensional nanostructures. Our result provides an insight into intrinsic ferroelectric critical size for low-dimensional chalcogenide layered materials.


2019 ◽  
Author(s):  
Qitang Fan ◽  
Daniel Martin-Jimenez ◽  
Daniel Ebeling ◽  
Claudio K. Krug ◽  
Lea Brechmann ◽  
...  

Various two-dimensional (2D) carbon allotropes with non-alternant topologies, such as pentaheptites and phagraphene, have been proposed. Predictions indicate that these metastable carbon polymorphs, which contain odd-numbered rings, possess unusual (opto)electronic properties. However, none of these materials has been achieved experimentally due to synthetic challenges. In this work, by using on-surface synthesis, nanoribbons of the non-alternant graphene allotropes, phagraphene and tetra-penta-hepta(TPH)-graphene have been obtained by dehydrogenative C-C coupling of 2,6-polyazulene chains. These chains were formed in a preceding reaction step via on-surface Ullmann coupling of 2,6-dibromoazulene. Low-temperature scanning probe microscopies with CO-functionalized tip and density functional theory calculations have been used to elucidate their structural properties. <br>


2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


Author(s):  
Amina Bouheddadj ◽  
Tarik Ouahrani ◽  
Gbèdodé Wilfried KANNHOUNON ◽  
Boufatah Reda ◽  
Sumeya Bedrane ◽  
...  

First-principles based on density functional theory (DFT) calculations were performed to investigate the interaction of two-dimensional (2D) HfS2 with SO2, a harmful gas with implications for climate change. In particular,...


2019 ◽  
Vol 21 (43) ◽  
pp. 24206-24211
Author(s):  
Seoung-Hun Kang ◽  
Jejune Park ◽  
Sungjong Woo ◽  
Young-Kyun Kwon

Using ab initio density functional theory calculations, we find four-fold degenerate Dirac points protected by two nonsymmorphic symmetries in phosphorene oxide with the inversion symmetry broken.


Sign in / Sign up

Export Citation Format

Share Document