scholarly journals DNAM-1 regulates Foxp3 expression in regulatory T cells by interfering with TIGIT under inflammatory conditions

2021 ◽  
Vol 118 (21) ◽  
pp. e2021309118
Author(s):  
Kazuki Sato ◽  
Yumi Yamashita-Kanemaru ◽  
Fumie Abe ◽  
Rikito Murata ◽  
Yuho Nakamura-Shinya ◽  
...  

Regulatory T (Treg) cells that express forkhead box P3 (Foxp3) are pivotal for immune tolerance. Although inflammatory mediators cause Foxp3 instability and Treg cell dysfunction, their regulatory mechanisms remain incompletely understood. Here, we show that the transfer of Treg cells deficient in the activating immunoreceptor DNAM-1 ameliorated the development of graft-versus-host disease better than did wild-type Treg cells. We found that DNAM-1 competes with T cell immunoreceptor with Ig and ITIM domains (TIGIT) in binding to their common ligand CD155 and therefore regulates TIGIT signaling to down-regulate Treg cell function without DNAM-1–mediated intracellular signaling. DNAM-1 deficiency augments TIGIT signaling; this subsequently inhibits activation of the protein kinase B–mammalian target of rapamycin complex 1 pathway, resulting in the maintenance of Foxp3 expression and Treg cell function under inflammatory conditions. These findings demonstrate that DNAM-1 regulates Treg cell function via TIGIT signaling and thus, it is a potential molecular target for augmenting Treg function in inflammatory diseases.

2015 ◽  
Vol 112 (25) ◽  
pp. E3246-E3254 ◽  
Author(s):  
Yayi Gao ◽  
Jiayou Tang ◽  
Weiqian Chen ◽  
Qiang Li ◽  
Jia Nie ◽  
...  

Forkhead box P3 (FOXP3)-positive Treg cells are crucial for maintaining immune homeostasis. FOXP3 cooperates with its binding partners to elicit Treg cells’ signature and function, but the molecular mechanisms underlying the modulation of the FOXP3 complex remain unclear. Here we report that Deleted in breast cancer 1 (DBC1) is a key subunit of the FOXP3 complex. We found that DBC1 interacts physically with FOXP3, and depletion of DBC1 attenuates FOXP3 degradation in inflammatory conditions. Treg cells from Dbc1-deficient mice were more resistant to inflammation-mediated abrogation of Foxp3 expression and function and delayed the onset and severity of experimental autoimmune encephalomyelitis and colitis in mice. These findings establish a previously unidentified mechanism regulating FOXP3 stability during inflammation and reveal a pathway for potential therapeutic modulation and intervention in inflammatory diseases.


Author(s):  
Marc Permanyer ◽  
Berislav Bošnjak ◽  
Silke Glage ◽  
Michaela Friedrichsen ◽  
Stefan Floess ◽  
...  

AbstractSignaling via interleukin-2 receptor (IL-2R) is a requisite for regulatory T (Treg) cell identity and function. However, it is not completely understood to what degree IL-2R signaling is required for Treg cell homeostasis, lineage stability and function in both resting and inflammatory conditions. Here, we characterized a spontaneous mutant mouse strain endowed with a hypomorphic Tyr129His variant of CD25, the α-chain of IL-2R, which resulted in diminished receptor expression and reduced IL-2R signaling. Under noninflammatory conditions, Cd25Y129H mice harbored substantially lower numbers of peripheral Treg cells with stable Foxp3 expression that prevented the development of spontaneous autoimmune disease. In contrast, Cd25Y129H Treg cells failed to efficiently induce immune suppression and lost lineage commitment in a T-cell transfer colitis model, indicating that unimpaired IL-2R signaling is critical for Treg cell function in inflammatory environments. Moreover, single-cell RNA sequencing of Treg cells revealed that impaired IL-2R signaling profoundly affected the balance of central and effector Treg cell subsets. Thus, partial loss of IL-2R signaling differentially interferes with the maintenance, heterogeneity, and suppressive function of the Treg cell pool.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 223 ◽  
Author(s):  
Charles Malemud

Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease that mostly affects small and large synovial joints. At the molecular level, RA is characterized by a profoundly defective innate and adaptive immune response that results in a chronic state of inflammation. Two of the most significant alterations in T-lymphocyte (T-cell) dysfunction in RA is the perpetual activation of T-cells that result in an abnormal proliferation state which also stimulate the proliferation of fibroblasts within the joint synovial tissue. This event results in what we have termed “apoptosis resistance”, which we believe is the leading cause of aberrant cell survival in RA. Finding therapies that will induce apoptosis under these conditions is one of the current goals of drug discovery. Over the past several years, a number of T-cell subsets have been identified. One of these T-cell subsets are the T-regulatory (Treg) cells. Under normal conditions Treg cells dictate the state of immune tolerance. However, in RA, the function of Treg cells become compromised resulting in Treg cell dysfunction. It has now been shown that several of the drugs employed in the medical therapy of RA can partially restore Treg cell function, which has also been associated with amelioration of the clinical symptoms of RA.


2005 ◽  
Vol 170 (1-2) ◽  
pp. 85-92 ◽  
Author(s):  
Magdalena J. Polanczyk ◽  
Corwyn Hopke ◽  
Jianya Huan ◽  
Arthur A. Vandenbark ◽  
Halina Offner

Author(s):  
Sonja Schallenberg ◽  
Cathleen Petzold ◽  
Julia Riewaldt ◽  
Karsten Kretschmer

CD4+CD25+ regulatory T (Treg) cells expressing the forkhead box transcription factor Foxp3 have a vital function in the maintenance of immune homeostasis and the prevention of fatal multi-organ autoimmunity throughout life. In the last decade, Foxp3+ Treg cells have raised the hope for novel cell-based therapies to achieve tolerance in clinical settings of unwanted immune responses such as autoimmunity and graft rejection. Conceptually, the antigen-specific enhancement of Treg cell function is of particular importance because such strategies will minimize the requirements for pharmaceutical immunosuppression, sparing desired protective host immune responses to infectious and malignant insults. This chapter discusses current concepts of Treg cell-based immunotherapy with particular emphasis on antigen-specific Treg cell induction from conventional CD4+ T cells to deal with organ-specific autoimmunity.


2020 ◽  
Vol 8 (1) ◽  
pp. e000169
Author(s):  
Fang Bai ◽  
Peng Zhang ◽  
Yipeng Fu ◽  
Hongliang Chen ◽  
Mingdi Zhang ◽  
...  

BackgroundRegulatory T (Treg) cells play a negative role in anti-tumor immunity against triple-negative breast cancer, so it is of great significance to find the potential therapeutic target of Treg cells.MethodsFirst, Annexin A1 (ANXA1) expression and survival of patients with breast cancer were analyzed using TCGA data. Then plasma ANXA1 levels in patients with malignant and benign breast tumors were detected by ELISA. Next, the effect of ANXA1 on Treg cells was studied through suppressive assays, and how ANXA1 regulates the function of Treg cells was detected by RNA sequencing. Finally, the in vivo experiment in balb/c mice was conducted to test whether the ANXA1 blocker Boc1 could shrink tumors and affect the function of Treg cells.ResultsOur data suggest that ANXA1 expression is associated with lower survival and a higher risk of breast malignancy. Suppressive assays show that ANXA1 can enhance the inhibition function of Treg cells. RNA-Sequencing results indicate that Boc1 could reduce the expression of granzyme A mRNA in Treg cells. Animal experiments have been done to show that Boc1 can reduce tumor size and down regulate Treg cell function.ConclusionsANXA1 can enhance the function of Treg cells and reduce the survival rate of patients with breast cancer. Targeting ANXA1 can reduce Treg cell function and shrink breast tumors.


2012 ◽  
Vol 166 (4) ◽  
pp. 641-646 ◽  
Author(s):  
Yun Hu ◽  
Wei Tian ◽  
Ling-Ling Zhang ◽  
Hao Liu ◽  
Guo-Ping Yin ◽  
...  

ObjectiveIntrathyroid injection of dexamethasone (DEX) has been used to treat Graves' disease (GD); however, the mechanism of this treatment remains poorly understood. The objective of this study was to investigate the effects of DEX on the function of regulatory T (Treg) cells (CD4+CD25+T cells) in patients with GD.MethodsPeripheral blood was obtained from 20 patients with GD, and peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll–Hypaque density gradient separation. CD4+CD25–/CD4+CD25+T cells were isolated by immunomagnetic selection and DEX was co-cultured with PBMCs or isolated T-cells for 72 h. Treg cell function was analyzed using the proliferation rate of CD4+CD25–T cells.ResultsThe proportion of Treg cells and the transcription factor forkhead box P3 (FOXP3) mRNA expression in PBMCs decreased in GD patients compared with healthy subjects, and Treg cell function was impaired in patients with GD. Although the proportion of Treg cells and FOXP3 mRNA expression in PBMCs did not increase, the function of Treg cells improved after the treatment with DEX. Moreover, the proportion of T-helper 2 (Th2) cells was decreased by the DEX treatment.ConclusionsDEX could effectively improve the function of Treg cells and set up a new balance of Th1/Th2 in GD patients. This study might help to further understand the immune mechanism of the intrathyroid injection of DEX in the treatment of GD and facilitate the potential use of this therapy.


2013 ◽  
Vol 211 (1) ◽  
pp. 137-151 ◽  
Author(s):  
Jae-Hoon Chang ◽  
Hongbo Hu ◽  
Jin Jin ◽  
Nahum Puebla-Osorio ◽  
Yichuan Xiao ◽  
...  

Regulatory T cells (Treg cells) control different aspects of immune responses, but how the effector functions of Treg cells are regulated is incompletely understood. Here we identified TNF receptor–associated factor 3 (TRAF3) as a regulator of Treg cell function. Treg cell–specific ablation of TRAF3 impaired CD4 T cell homeostasis, characterized by an increase in the Th1 type of effector/memory T cells. Moreover, the ablation of TRAF3 in Treg cells resulted in increased antigen-stimulated activation of follicular T helper cells (TFH cells), coupled with heightened formation of germinal centers and production of high-affinity IgG antibodies. Although the loss of TRAF3 did not reduce the overall frequency of Treg cells, it attenuated the antigen-stimulated production of follicular Treg cells (TFR cells). TRAF3 signaling in Treg cells was required to maintain high level expression of inducible co-stimulator (ICOS), which in turn was required for TFR cell generation and inhibition of antibody responses. These findings establish TRAF3 as a mediator of Treg cell function in the regulation of antibody responses and suggest a role for TRAF3 in mediating ICOS expression in Treg cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Rana G. Zaini ◽  
Amani A. Al-Rehaili

Regulatory T cells (Treg cells) are considered one of the main dynamic cell types within the immune system. Because Treg cells suppress immune responses, they have potential roles in immunological self-tolerance and may help to maintain immune homeostasis. Promoting Treg cell function and increasing their numbers might be useful in treating autoimmune disorders, as well as preventing allograft rejection. However, studies of mice and humans demonstrate that Treg cells promote cancer progression and suppress antitumor immunity. Therefore, suppressing Treg cell function or reducing their numbers could support the immune system’s response to pathogenic microorganisms and tumors. As a result, there is great interest in investigating the Treg cells role in the treatment of hematological and nonhematological malignancies. Consequently, Treg cells could be a fundamentally important target for pathologies of the immune system. Targeting effector Treg cells could help to distinguish and selectively decrease these cells while preserving other Treg cells needed to suppress autoimmunity. Currently, a promising way to treat malignancies and other autoimmune disorders is stem cell transplantation. Stem cell transplants (SCT) can help to manage the production of Treg cells and also may produce more efficient Treg cells, thereby suppressing clinical disease progression. Specifically, mature T cells within the engrafted stem cells mediate this SCT beneficial effect. During SCT, the recipient’s immune system is replaced with a donor, which allows for improved immune system function. In addition, SCT can protect from disease relapse, as graft-versus-host disease (GvHD) in transplant patients can be protective against cancer recurrence. The current review will define the role of regulatory T cells in treatment of malignancy. Additionally, it will summarize current promising research regarding the utility of regulatory T cells in stem cell transplantation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3462-3462
Author(s):  
Rao H. Prabhala ◽  
Paola Neri ◽  
Pierfrancesco Tassone ◽  
Jooeun E. Bae ◽  
Masood A. Shammas ◽  
...  

Abstract Multiple myeloma (MM) is characterized by production of monoclonal immunoglobulin, associated with suppressed uninvolved immunoglobulins and dysfunctional T cell responses. The biological basis of this dysfunction remains ill defined. Since T regulatory (Treg) cells play an important role in suppressing normal immune responses, we have here evaluated the potential role of Treg cells in immune dysfunction in MM. We observed a significant increase in CD4+CD25+ T cells in individuals with monoclonal gammopathy of undetermined significance (MGUS) and patients with MM compared to normal donors (25% and 26% versus 14%, respectively); however, Treg cells as measured by Foxp3 expression are significantly decreased in both MGUS (1.6±0.5%, p<0.01) and MM (1.6±0.5%, p<0.01) compared to normal donors (6.0±0.8%). Additionally, these Treg cells also do not function normally. Treg cells from patients with MM and MGUS even when added in higher proportions are unable to suppress anti-CD3-mediated T cell proliferation. This decreased number and function of Treg cells in MGUS and in MM may account, at least in part, for the non-specific increase in CD4+CD25+ T cells, thereby contributing to dysfunctional T cell responses. We have further analyzed the molecular basis for the Treg cell dysfunction in myeloma. Based on the preliminary results suggesting a role of IL-6 in Treg cell function and since both serum IL-6 and soluble IL-6 receptor levels are significantly elevated in MGUS and MM, we evaluated the role of IL-6 and its soluble receptor on Treg cell function. We observed that the addition of IL-6 and/or sIL-6 receptor to the culture leads to loss of Treg cell activity in normal donor cells similar to one observed in myeloma patients; and conversely, when Treg cells from MM patients are treated with the anti-IL-6 antibody or IL-6 receptor super antagonist, sant 7, the suppressive activity of Treg cells is restored. Additionally, we have preliminary evidence of expansion of Foxp3+ cell numbers in PBMC from MM patients following in vitro treatment with anti-IL-6 antibody. This data suggests a role of IL-6 and bone marrow microenvironment in dysfunctional Treg cells in MM and that inhibition of IL-6 signaling results in beneficial effects on T cell activity by increasing Treg cell activity. A blockade of IL-6 signaling thus emerges as a potential approach to establish immune homeostasis to improve immune function in MM.


Sign in / Sign up

Export Citation Format

Share Document