scholarly journals DOT1L complex regulates transcriptional initiation in human erythroleukemic cells

2021 ◽  
Vol 118 (27) ◽  
pp. e2106148118
Author(s):  
Aiwei Wu ◽  
Junhong Zhi ◽  
Tian Tian ◽  
Ali Cihan ◽  
Murat A. Cevher ◽  
...  

DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17, and ENL or AF9, is dysregulated in most cases of mixed-lineage leukemia (MLLr), and has been believed to regulate transcriptional elongation on the basis of its colocalization with RNA polymerase II (Pol II), the sharing of subunits (AF9 and ENL) between the DOT1L and super elongation complexes, and the distribution of H3K79 methylation on both promoters and transcribed regions of active genes. Here we show that DOT1L depletion in erythroleukemic cells reduces its global occupancy without affecting the traveling ratio or the elongation rate (assessed by 4sUDRB-seq) of Pol II, suggesting that DOT1L does not play a major role in elongation in these cells. In contrast, analyses of transcription initiation factor binding reveal that DOT1L and ENL depletions each result in reduced TATA binding protein (TBP) occupancies on thousands of genes. More importantly, DOT1L and ENL depletions concomitantly reduce TBP and Pol II occupancies on a significant fraction of direct (DOT1L-bound) target genes, indicating a role for the DOT1L complex in transcription initiation. Mechanistically, proteomic and biochemical studies suggest that the DOT1L complex may regulate transcriptional initiation by facilitating the recruitment or stabilization of transcription factor IID, likely in a monoubiquitinated H2B (H2Bub1)-enhanced manner. Additional studies show that DOT1L enhances H2Bub1 levels by limiting recruitment of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. These results advance our understanding of roles of the DOT1L complex in transcriptional regulation and have important implications for MLLr leukemias.

2021 ◽  
Author(s):  
Jibo Zhang ◽  
Aakanksha Gundu ◽  
Brian D. Strahl

How transcription programs rapidly adjust to changing metabolic and cellular cues remains poorly defined. Here, we reveal a function for the Yaf9 component of the SWR1-C and NuA4 chromatin regulatory complexes in maintaining timely transcription of metabolic genes across the yeast metabolic cycle (YMC). By reading histone acetylation during the oxidative and respiratory phase of the YMC, Yaf9 recruits SWR1-C and NuA4 complexes to deposit H2A.Z and acetylate H4, respectively. Increased H2A.Z and H4 acetylation during the oxidative phase promotes transcriptional initiation and chromatin machinery occupancy and is associated with reduced RNA polymerase II levels at genes—a pattern reversed during transition from oxidative to reductive metabolism. Prevention of Yaf9-H3 acetyl reading disrupted this pattern of transcriptional and chromatin regulator recruitment and impaired the timely transcription of metabolic genes. Together, these findings reveal that Yaf9 contributes to a dynamic chromatin and transcription initiation factor signature that is necessary for the proper regulation of metabolic gene transcription during the YMC. They also suggest that unique regulatory mechanisms of transcription exist at distinct metabolic states.


2020 ◽  
Author(s):  
Ming Yu ◽  
Robert Roeder ◽  
Aiwei Wu ◽  
Junhong Zhi ◽  
Tian Tian ◽  
...  

DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17 and ENL/AF9, is dysregulated in most of the cases of mixed lineage leukemia (MLL) and is believed to regulate transcriptional elongation without much evidence. Here we show that DOT1L depletion reduced the global occupancy without affecting the traveling ratio or the elongation rate of Pol II, suggesting it not a major elongation factor. An examination of general transcription factors binding revealed globally reduced TBP and TFIIA occupancies near promoters after DOT1L loss, pointing to a role in transcriptional initiation. Proteomic studies uncovered that DOT1L regulates transcriptional initiation likely by facilitating the recruitment of TFIID. Moreover, ENL, a DOT1L complex subunit with a known role in DOT1L recruitment, also regulates transcriptional initiation. Furthermore, DOT1L stimulates H2B monoubiquitination by limiting the recruitment of human SAGA complex, and the connection between Dot1/DOT1L and SAGA complex is conserved between yeast and human. These results advanced current understanding of roles of DOT1L complex in transcriptional regulation and MLL.


2007 ◽  
Vol 27 (6) ◽  
pp. 2059-2073 ◽  
Author(s):  
Victoria H. Cowling ◽  
Michael D. Cole

ABSTRACT Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc −/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters and stimulates TFIIH binding in an MBII-dependent manner. Expression of the Myc transactivation domain increases CDK mRNA cap methylation, polysome loading, and the rate of translation. We find that some traditional Myc transcriptional target genes are also regulated by this Myc-driven translation mechanism. We propose that Myc transactivation domain-driven RNA Pol II CTD phosphorylation has broad effects on both transcription and mRNA metabolism.


2019 ◽  
Author(s):  
Martin S. C. Larke ◽  
Takayuki Nojima ◽  
Jelena Telenius ◽  
Jacqueline A. Sharpe ◽  
Jacqueline A. Sloane-Stanley ◽  
...  

ABSTRACTGene transcription occurs via a cycle of linked events including initiation, promoter proximal pausing and elongation of RNA polymerase II (Pol II). A key question is how do transcriptional enhancers influence these events to control gene expression? Here we have used a new approach to quantify transcriptional initiation and pausing in vivo, while simultaneously identifying transcription start sites (TSSs) and pause-sites (TPSs) from single RNA molecules. When analyzed in parallel with nascent RNA-seq, these data show that differential gene expression is achieved predominantly via changes in transcription initiation rather than Pol II pausing. Using genetically engineered mouse models deleted for specific enhancers we show that these elements control gene expression via Pol II recruitment and/or initiation rather than via promoter proximal pause release. Together, our data show that enhancers, in general, control gene expression predominantly by Pol II recruitment and initiation rather than via pausing.


2018 ◽  
Author(s):  
M. Boehning ◽  
C. Dugast-Darzacq ◽  
M. Rankovic ◽  
A. S. Hansen ◽  
T. Yu ◽  
...  

The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is an intrinsically disordered low-complexity region that is critical for pre-mRNA transcription and processing. The CTD consists of hepta-amino acid repeats varying in number from 52 in humans to 26 in yeast. Here we report that human and yeast CTDs undergo cooperative liquid phase separation at increasing protein concentration, with the shorter yeast CTD forming less stable droplets. In human cells, truncation of the CTD to the length of the yeast CTD decreases Pol II clustering and chromatin association whereas CTD extension has the opposite effect. CTD droplets can incorporate intact Pol II and are dissolved by CTD phosphorylation with the transcription initiation factor IIH kinase CDK7. Together with published data, our results suggest that Pol II forms clusters/hubs at active genes through interactions between CTDs and with activators, and that CTD phosphorylation liberates Pol II enzymes from hubs for promoter escape and transcription elongation.


1989 ◽  
Vol 9 (12) ◽  
pp. 5750-5753
Author(s):  
M Moyle ◽  
J S Lee ◽  
W F Anderson ◽  
C J Ingles

Monoclonal antibodies specific for the evolutionarily conserved C-terminal heptapeptide repeat domain of the largest subunit of RNA polymerase II inhibited the initiation of transcription from mammalian promoters in vitro. Since these antibodies did not inhibit elongation and randomly initiated transcription, the heptapeptide repeats may function by binding class II transcription initiation factor(s).


1989 ◽  
Vol 9 (12) ◽  
pp. 5750-5753 ◽  
Author(s):  
M Moyle ◽  
J S Lee ◽  
W F Anderson ◽  
C J Ingles

Monoclonal antibodies specific for the evolutionarily conserved C-terminal heptapeptide repeat domain of the largest subunit of RNA polymerase II inhibited the initiation of transcription from mammalian promoters in vitro. Since these antibodies did not inhibit elongation and randomly initiated transcription, the heptapeptide repeats may function by binding class II transcription initiation factor(s).


2006 ◽  
Vol 27 (4) ◽  
pp. 1309-1320 ◽  
Author(s):  
Melissa Mattia ◽  
Vanesa Gottifredi ◽  
Kristine McKinney ◽  
Carol Prives

ABSTRACT We have previously reported that when DNA replication is blocked in some human cell lines, p53 is impaired in its ability to induce a subset of its key target genes, including p21 WAF1/CIP1 . Here, we investigated the reason for this impairment by comparing the effects of two agents, hydroxyurea (HU), which arrests cells in early S phase and impairs induction of p21, and daunorubicin, which causes a G2 block and leads to robust activation of p21 by p53. HU treatment was shown to inhibit p21 mRNA transcription rather than alter its mRNA stability. Nevertheless, chromatin immunoprecipitation assays revealed that HU impacts neither p53 binding nor acetylation of histones H3 and H4 within the p21 promoter. Furthermore, recruitment of the TFIID/TATA-binding protein complex and the large subunit of RNA polymerase II (RNA Pol II) are equivalent after HU and daunorubicin treatments. Relative to daunorubicin treatment, however, transcription elongation of the p21 gene is significantly impaired in cells treated with HU, as evidenced by reduced occupancy of RNA Pol II at regions downstream of the start site. Likewise, in the p21 downstream region after administration of HU, there is less of a specifically phosphorylated form of RNA Pol II (Pol II-C-terminal domain serine 2P) which occurs only when the polymerase is elongating RNA. We propose that while the DNA replication checkpoint is unlikely to regulate the assembly of a p21 promoter initiation complex, it signals to one or more factors involved in the process of transcriptional elongation.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3510
Author(s):  
Ray Ishida ◽  
Jamie Cole ◽  
Joaquin Lopez-Orozco ◽  
Nawell Fayad ◽  
Alberto Felix-Lopez ◽  
...  

Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.


Sign in / Sign up

Export Citation Format

Share Document