scholarly journals A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII

2021 ◽  
Vol 118 (32) ◽  
pp. e2108967118
Author(s):  
Ximena López ◽  
Nicolás Palacios-Prado ◽  
Juan Güiza ◽  
Rosalba Escamilla ◽  
Paola Fernández ◽  
...  

Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation—measured by changes in DAPI uptake rate—was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.

1999 ◽  
Vol 113 (5) ◽  
pp. 695-720 ◽  
Author(s):  
Shinghua Ding ◽  
Frederick Sachs

The single channel properties of cloned P2X2 purinoceptors expressed in human embryonic kidney (HEK) 293 cells and Xenopus oocytes were studied in outside-out patches. The mean single channel current–voltage relationship exhibited inward rectification in symmetric solutions with a chord conductance of ∼30 pS at −100 mV in 145 mM NaCl. The channel open state exhibited fast flickering with significant power beyond 10 kHz. Conformational changes, not ionic blockade, appeared responsible for the flickering. The equilibrium constant of Na+ binding in the pore was ∼150 mM at 0 mV and voltage dependent. The binding site appeared to be ∼0.2 of the electrical distance from the extracellular surface. The mean channel current and the excess noise had the selectivity: K+ > Rb+ > Cs+ > Na+ > Li+. ATP increased the probability of being open (Po) to a maximum of 0.6 with an EC50 of 11.2 μM and a Hill coefficient of 2.3. Lowering extracellular pH enhanced the apparent affinity of the channel for ATP with a pKa of ∼7.9, but did not cause a proton block of the open channel. High pH slowed the rise time to steps of ATP without affecting the fall time. The mean single channel amplitude was independent of pH, but the excess noise increased with decreasing pH. Kinetic analysis showed that ATP shortened the mean closed time but did not affect the mean open time. Maximum likelihood kinetic fitting of idealized single channel currents at different ATP concentrations produced a model with four sequential closed states (three binding steps) branching to two open states that converged on a final closed state. The ATP association rates increased with the sequential binding of ATP showing that the binding sites are not independent, but positively cooperative. Partially liganded channels do not appear to open. The predicted Po vs. ATP concentration closely matches the single channel current dose–response curve.


2020 ◽  
Vol 295 (34) ◽  
pp. 12262-12278
Author(s):  
Surya P. Manandhar ◽  
Ikha M. Siddiqah ◽  
Stephanie M. Cocca ◽  
Editte Gharakhanian

Membrane fusion/fission is a highly dynamic and conserved process that responds to intra- and extracellular signals. Whereas the molecular machineries involved in membrane fusion/fission have been dissected, regulation of membrane dynamics remains poorly understood. The lysosomal vacuole of budding yeast (Saccharomyces cerevisiae) has served as a seminal model in studies of membrane dynamics. We have previously established that yeast ENV7 encodes an ortholog of STK16-related kinases that localizes to the vacuolar membrane and downregulates vacuolar membrane fusion. Additionally, we have previously reported that Env7 phosphorylation in vivo depends on YCK3, a gene that encodes a vacuolar membrane casein kinase I (CKI) homolog that nonredundantly functions in fusion regulation. Here, we report that Env7 physically interacts with and is directly phosphorylated by Yck3. We also establish that Env7 vacuole fusion/fission regulation and vacuolar localization are mediated through its Yck3-dependent phosphorylation. Through extensive site-directed mutagenesis, we map phosphorylation to the Env7 C terminus and confirm that Ser-331 is a primary and preferred phosphorylation site. Phospho-deficient Env7 mutants were defective in negative regulation of membrane fusion, increasing the number of prominent vacuoles, whereas a phosphomimetic substitution at Ser-331 increased the number of fragmented vacuoles. Bioinformatics approaches confirmed that Env7 Ser-331 is within a motif that is highly conserved in STK16-related kinases and that it also anchors an SXXS CKI phosphorylation motif (328SRFS331). This study represents the first report on the regulatory mechanism of an STK16-related kinase. It also points to regulation of vacuolar membrane dynamics via a novel Yck3–Env7 kinase cascade.


2020 ◽  
Vol 152 (4) ◽  
Author(s):  
Miranda J. McDaniel ◽  
Kevin K. Ogden ◽  
Steven A. Kell ◽  
Pieter B. Burger ◽  
Dennis C. Liotta ◽  
...  

The NMDA receptor (NMDAR) is an ionotropic glutamate receptor formed from the tetrameric assembly of GluN1 and GluN2 subunits. Within the flexible linker between the agonist binding domain (ABD) and the M1 helix of the pore-forming transmembrane helical bundle lies a two-turn, extracellular pre-M1 helix positioned parallel to the plasma membrane and in van der Waals contact with the M3 helix thought to constitute the channel gate. The pre-M1 helix is tethered to the bilobed ABD, where agonist-induced conformational changes initiate activation. Additionally, it is a locus for de novo mutations associated with neurological disorders, is near other disease-associated de novo sites within the transmembrane domain, and is a structural determinant of subunit-selective modulators. To investigate the role of the pre-M1 helix in channel gating, we performed scanning mutagenesis across the GluN2A pre-M1 helix and recorded whole-cell macroscopic and single channel currents from HEK293 cell-attached patches. We identified two residues at which mutations perturb channel open probability, the mean open time, and the glutamate deactivation time course. We identified a subunit-specific network of aromatic amino acids located in and around the GluN2A pre-M1 helix to be important for gating. Based on these results, we are able to hypothesize about the role of the pre-M1 helix in other NMDAR subunits based on sequence and structure homology. Our results emphasize the role of the pre-M1 helix in channel gating, implicate the surrounding amino acid environment in this mechanism, and suggest unique subunit-specific contributions of pre-M1 helices to GluN1 and GluN2 gating.


2001 ◽  
Vol 7 (S2) ◽  
pp. 24-25
Author(s):  
Gisela Cymes ◽  
Claudio Grosman ◽  
Anthony Auerbach

The muscle nicotinic acetylcholine receptor channel (AChR) is a cylindrical allosteric membrane protein (∼120 x 60 Å Fig. 1) that adopts alternative quaternary conformations (“open” and “closed”) with different functional properties (ion-conducting and ion-impermeable, respectively). We have characterized, residue-by-residue, the dynamics of the conformational change associated with gating using the framework of linear free energy relationships (LFER). The sequence of molecular events that underlies the closed-to-open gating transition was inferred from kinetic measurements of the receptor at the single molecule level.Specific regions of the AChR were perturbed using site-directed mutagenesis, changes in the membrane potential, or different agonists. Single-channel currents were recorded from cell-attached patches (Fig. 2). For the gain-of-function mutations, choline was used as the agonist because of its low efficacy. The opening rate constant was determined at a saturating concentration of agonist (for choline, 20 mM) in order to isolate gating from binding steps. to avoid bias introduced by fast channel blockade, the closing rate constant was measured at a low concentration (for choline, 200 μM). The diliganded channel opening (β) and closing (α) rate constants were estimated using the QuB suite of kinetic analysis programs. in general, a plot of the log rate constant vs. log equilibrium constant was linear.


2009 ◽  
Vol 87 (5) ◽  
pp. 387-395 ◽  
Author(s):  
Jing-Jun Zhou ◽  
Paul Linsdell

Extracellular anions enter into the pore of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel, interacting with binding sites on the pore walls and with other anions inside the pore. There is increasing evidence that extracellular anions may also interact with sites away from the channel pore to influence channel properties. We have used site-directed mutagenesis and patch-clamp recording to identify residues that influence interactions with external anions. Anion interactions were assessed by the ability of extracellular Pt(NO2)42– ions to weaken the pore-blocking effect of intracellular Pt(NO2)42– ions, a long-range ion–ion interaction that does not appear to reflect ion interactions inside the pore. We found that mutations that remove positive charges in the 4th extracellular loop of CFTR (K892Q and R899Q) significantly alter the interaction between extracellular and intracellular Pt(NO2)42– ions. These mutations do not affect unitary Cl– conductance or block of single-channel currents by extracellular Pt(NO2)42– ions, however, suggesting that the mutated residues are not in the channel pore region. These results suggest that extracellular anions can regulate CFTR pore properties by binding to a site outside the pore region, probably by a long-range conformational change. Our findings also point to a novel function of the long 4th extracellular loop of the CFTR protein in sensing and (or) responding to anions in the extracellular solution.


1996 ◽  
Vol 320 (3) ◽  
pp. 801-806 ◽  
Author(s):  
Anna E. MARLEY ◽  
Jane E. SULLIVAN ◽  
David CARLING ◽  
W. Mark ABBOTT ◽  
Graeme J. SMITH ◽  
...  

The use of protein phosphatase inhibitors has been instrumental in defining the intracellular roles of protein phosphatase 1 (PP1), PP2A and PP2B. Identification of the role of PP2C in vivo has been hampered, in part, by the unavailability of specific inhibitors. In order to facilitate the identification of novel and specific inhibitors of PP2C by random screening of compounds, and to further characterize this enzyme at the molecular level by site-directed mutagenesis and X-ray crystallography, we have expressed active recombinant human PP2Cα (rPP2Cα) in Escherichia coli. Biochemical characterization of rPP2Cα showed that it could hydrolyse p-nitrophenyl phosphate (pNPP) although, in contrast with native PP2C, this was not stimulated by Mg2+. As with native PP2C, okadaic acid failed to inhibit rPP2Cα, whereas 50 mM NaF dramatically inhibited its activity. An alignment of the amino acid sequence of AMP-activated protein kinase (AMPK) with those of other serine/threonine protein kinases around the regulatory phosphorylation site (subdomains VII–VIII) revealed a high degree of conservation. Phosphopeptides derived from this region of AMPK and containing the almost invariant threonine (Thr172 in AMPK) were found to be good substrates for rPP2Cα. We also showed that rPP2Cα can inactivate AMPK, but only in the presence of Mg2+. To define the regions of PP2Cα important for catalytic activity, we expressed a number of truncated proteins based on the sequence and proposed domain structure of the PP2Cα homologue from Paramecium tetraurelia. Deletion of 75 residues (9 kDa) from the C-terminus appeared to have little effect on the catalytic activity using pNPP, phosphopeptides or AMPK as substrates. This suggests that the residues important in catalysis lie elsewhere in the protein. A further deletion of the C-terminus led to a completely inactive and very poorly soluble protein.


1999 ◽  
Vol 181 (14) ◽  
pp. 4430-4434 ◽  
Author(s):  
Kari D. Hagen ◽  
John C. Meeks

ABSTRACT In a test of the hypothesis that DevR is a response regulator protein that functions in a phosphorelay signal transduction system involved in heterocyst development in Nostoc punctiformeATCC 29133, purified affinity-tagged DevR was shown to be phosphorylated in vitro by the noncognate sensor kinase EnvZ. Site-directed mutagenesis was used to generate N. punctiforme mutants with single amino acid substitutions at the putative phosphorylation site of DevR. These mutants exhibited a Fox− phenotype like the original devRinsertion mutant UCD 311, consistent with a phosphotransferase role for DevR.


2006 ◽  
Vol 26 (22) ◽  
pp. 8639-8654 ◽  
Author(s):  
Zheng Fu ◽  
Katherine A. Larson ◽  
Raghu K. Chitta ◽  
Sirlester A. Parker ◽  
Benjamin E. Turk ◽  
...  

ABSTRACT MAK (male germ cell-associated protein kinase) and MRK/ICK (MAK-related kinase/intestinal cell kinase) are human homologs of Ime2p in Saccharomyces cerevisiae and of Mde3 and Pit1 in Schizosaccharomyces pombe and are similar to human cyclin-dependent kinase 2 (CDK2) and extracellular signal-regulated kinase 2 (ERK2). MAK and MRK require dual phosphorylation in a TDY motif catalyzed by an unidentified human threonine kinase and tyrosine autophosphorylation. Herein, we establish that human CDK-related kinase CCRK (cell cycle-related kinase) is an activating T157 kinase for MRK, whereas active CDK7/cyclin H/MAT1 complexes phosphorylate CDK2 but not MRK. Protein phosphatase 5 (PP5) interacts with MRK in a complex and dephosphorylates MRK at T157 in vitro and in situ. Thus, CCRK and PP5 are yin-yang regulators of T157 phosphorylation. To determine a substrate consensus, we screened a combinatorial peptide library with active MRK. MRK preferentially phosphorylates R-P-X-S/T-P sites, with the preference for arginine at position −3 (P−3) being more stringent than for prolines at P−2 and P+1. Using the consensus, we identified a putative phosphorylation site (RPLT1080S) for MRK in human Scythe, an antiapoptotic protein that interacts with MRK. MRK phosphorylates Scythe at T1080 in vitro as determined by site-directed mutagenesis and mass spectrometry, supporting the consensus and suggesting Scythe as a physiological substrate for MRK.


1999 ◽  
Vol 113 (4) ◽  
pp. 525-540 ◽  
Author(s):  
Sergei I. Sukharev ◽  
Wade J. Sigurdson ◽  
Ching Kung ◽  
Frederick Sachs

MscL is multimeric protein that forms a large conductance mechanosensitive channel in the inner membrane of Escherichia coli. Since MscL is gated by tension transmitted through the lipid bilayer, we have been able to measure its gating parameters as a function of absolute tension. Using purified MscL reconstituted in liposomes, we recorded single channel currents and varied the pressure gradient (P) to vary the tension (T). The tension was calculated from P and the radius of curvature was obtained using video microscopy of the patch. The probability of being open (Po) has a steep sigmoidal dependence on T, with a midpoint (T1/2) of 11.8 dyn/cm. The maximal slope sensitivity of Po/Pc was 0.63 dyn/cm per e-fold. Assuming a Boltzmann distribution, the energy difference between the closed and fully open states in the unstressed membrane was ΔE = 18.6 kBT. If the mechanosensitivity arises from tension acting on a change of in-plane area (ΔA), the free energy, TΔA, would correspond to ΔA = 6.5 nm2. MscL is not a binary channel, but has four conducting states and a closed state. Most transition rates are independent of tension, but the rate-limiting step to opening is the transition between the closed state and the lowest conductance substate. This transition thus involves the greatest ΔA. When summed over all transitions, the in-plane area change from closed to fully open was 6 nm2, agreeing with the value obtained in the two-state analysis. Assuming a cylindrical channel, the dimensions of the (fully open) pore were comparable to ΔA. Thus, the tension dependence of channel gating is primarily one of increasing the external channel area to accommodate the pore of the smallest conducting state. The higher conducting states appear to involve conformational changes internal to the channel that don't involve changes in area.


Sign in / Sign up

Export Citation Format

Share Document