scholarly journals Plant–environment microscopy tracks interactions of Bacillus subtilis with plant roots across the entire rhizosphere

2021 ◽  
Vol 118 (48) ◽  
pp. e2109176118
Author(s):  
Yangminghao Liu ◽  
Daniel Patko ◽  
Ilonka Engelhardt ◽  
Timothy S. George ◽  
Nicola R. Stanley-Wall ◽  
...  

Our understanding of plant–microbe interactions in soil is limited by the difficulty of observing processes at the microscopic scale throughout plants’ large volume of influence. Here, we present the development of three-dimensional live microscopy for resolving plant–microbe interactions across the environment of an entire seedling growing in a transparent soil in tailor-made mesocosms, maintaining physical conditions for the culture of both plants and microorganisms. A tailor-made, dual-illumination light sheet system acquired photons scattered from the plant while fluorescence emissions were simultaneously captured from transparent soil particles and labeled microorganisms, allowing the generation of quantitative data on samples ∼3,600 mm3 in size, with as good as 5 µm resolution at a rate of up to one scan every 30 min. The system tracked the movement of Bacillus subtilis populations in the rhizosphere of lettuce plants in real time, revealing previously unseen patterns of activity. Motile bacteria favored small pore spaces over the surface of soil particles, colonizing the root in a pulsatile manner. Migrations appeared to be directed toward the root cap, the point of “first contact,” before the subsequent colonization of mature epidermis cells. Our findings show that microscopes dedicated to live environmental studies present an invaluable tool to understand plant–microbe interactions.

2021 ◽  
Author(s):  
Yangminghao Liu ◽  
Daniel Patko ◽  
Ilonka Engelhardt ◽  
Timothy S George ◽  
Nicola Stanley-Wall ◽  
...  

AbstractPlant growth is supported by complex interactions with many biophysical elements of their environment including microorganisms, geochemicals, water and gas, all within the otherwise complex and heterogeneous soils’ physical environment. Our understanding of plant-environment interactions in soil are limited by the difficulty of observing such interactions at the microscopic scale which occur throughout the large volume of influence of the plant. Here, we present the development of 3D live microscopy approaches for resolving plant-microbe interactions across the environment of an entire seedling root growing in a transparent soil in tailor-made mesocosms, maintaining physical conditions for the culture of both plants and microorganisms. A dual-illumination light-sheet system was used to acquire scattering signals from the plant whilst fluorescence signals were captured from transparent soil particles and labelled microorganisms, allowing the generation of quantitative data on samples approximately 3600 mm3 in size with as good as 5 μm resolution at a rate of up to one scan every 30 minutes. The system can track the movement of Bacillus subtilis populations in the rhizosphere of lettuce plants in real time, revealing previously unseen patterns of activity. Motile bacteria favoured small pore spaces over the surface of soil particles, colonising the root in a pulsatile manner. Migrations appeared to be directed first towards the root cap as the point “first contact”, before subsequent colonisation of mature epidermis cells. Our findings show that microscopes dedicated to live environmental studies present an invaluable tool to understand life in soils.SignificanceBetter knowledge of microbial movement and interaction with plant roots is essential to understanding soil ecosystems. However, the lack of a suitable approach for observing biological activity in such environments severely impedes advances in this field of research. Here, we overcome this major limitation by combining the use of transparent soil with cutting edge live microscopy techniques. We performed a detailed analysis of the movements of Bacillus subtilis and revealed how the soil pore structure influences the behaviour of the bacteria, both before and during the formation of biofilms on the root surface. This work sheds light on previously unseen phenomenon, and accelerates our understanding of soil dwelling organisms which were, before now, unobserved in their native environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Chen ◽  
Xun Chen ◽  
R. Glenn Hepfer ◽  
Brooke J. Damon ◽  
Changcheng Shi ◽  
...  

AbstractDiffusion is a major molecular transport mechanism in biological systems. Quantifying direction-dependent (i.e., anisotropic) diffusion is vitally important to depicting how the three-dimensional (3D) tissue structure and composition affect the biochemical environment, and thus define tissue functions. However, a tool for noninvasively measuring the 3D anisotropic extracellular diffusion of biorelevant molecules is not yet available. Here, we present light-sheet imaging-based Fourier transform fluorescence recovery after photobleaching (LiFT-FRAP), which noninvasively determines 3D diffusion tensors of various biomolecules with diffusivities up to 51 µm2 s−1, reaching the physiological diffusivity range in most biological systems. Using cornea as an example, LiFT-FRAP reveals fundamental limitations of current invasive two-dimensional diffusion measurements, which have drawn controversial conclusions on extracellular diffusion in healthy and clinically treated tissues. Moreover, LiFT-FRAP demonstrates that tissue structural or compositional changes caused by diseases or scaffold fabrication yield direction-dependent diffusion changes. These results demonstrate LiFT-FRAP as a powerful platform technology for studying disease mechanisms, advancing clinical outcomes, and improving tissue engineering.


Author(s):  
Yuta Otsuka ◽  
Hirokazu Tsukaya

AbstractOrganisms have a variety of three-dimensional (3D) structures that change over time. These changes include twisting, which is 3D deformation that cannot happen in two dimensions. Twisting is linked to important adaptive functions of organs, such as adjusting the orientation of leaves and flowers in plants to align with environmental stimuli (e.g. light, gravity). Despite its importance, the underlying mechanism for twisting remains to be determined, partly because there is no rigorous method for quantifying the twisting of plant organs. Conventional studies have relied on approximate measurements of the twisting angle in 2D, with arbitrary choices of observation angle. Here, we present the first rigorous quantification of the 3D twisting angles of Arabidopsis petioles based on light sheet microscopy. Mathematical separation of bending and twisting with strict definition of petiole cross-sections were implemented; differences in the spatial distribution of bending and twisting were detected via the quantification of angles along the petiole. Based on the measured values, we discuss that minute degrees of differential growth can result in pronounced twisting in petioles.


The Analyst ◽  
2021 ◽  
Author(s):  
Yucheng Sun ◽  
Seungah Lee ◽  
Seong Ho Kang

The contact distance between mitochondria (Mito) and endoplasmic reticulum (ER) has received considerable attention owing to their crucial function in maintaining lipid and calcium homeostasis. Herein, cubic spline algorithm-based depth-dependent...


2017 ◽  
Vol 153 (4) ◽  
pp. 898-900 ◽  
Author(s):  
Sebastian Zundler ◽  
Anika Klingberg ◽  
Daniela Schillinger ◽  
Sarah Fischer ◽  
Clemens Neufert ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e96551 ◽  
Author(s):  
Kavya Mohan ◽  
Subhajit B. Purnapatra ◽  
Partha Pratim Mondal

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lillian K Fritz-Laylin ◽  
Megan Riel-Mehan ◽  
Bi-Chang Chen ◽  
Samuel J Lord ◽  
Thomas D Goddard ◽  
...  

Leukocytes and other amoeboid cells change shape as they move, forming highly dynamic, actin-filled pseudopods. Although we understand much about the architecture and dynamics of thin lamellipodia made by slow-moving cells on flat surfaces, conventional light microscopy lacks the spatial and temporal resolution required to track complex pseudopods of cells moving in three dimensions. We therefore employed lattice light sheet microscopy to perform three-dimensional, time-lapse imaging of neutrophil-like HL-60 cells crawling through collagen matrices. To analyze three-dimensional pseudopods we: (i) developed fluorescent probe combinations that distinguish cortical actin from dynamic, pseudopod-forming actin networks, and (ii) adapted molecular visualization tools from structural biology to render and analyze complex cell surfaces. Surprisingly, three-dimensional pseudopods turn out to be composed of thin (<0.75 µm), flat sheets that sometimes interleave to form rosettes. Their laminar nature is not templated by an external surface, but likely reflects a linear arrangement of regulatory molecules. Although we find that Arp2/3-dependent pseudopods are dispensable for three-dimensional locomotion, their elimination dramatically decreases the frequency of cell turning, and pseudopod dynamics increase when cells change direction, highlighting the important role pseudopods play in pathfinding.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Timothy J Duerr ◽  
Ester Comellas ◽  
Eun Kyung Jeon ◽  
Johanna E Farkas ◽  
Marylou Joetzjer ◽  
...  

Measuring nascent macromolecular synthesis in vivo is key to understanding how cells and tissues progress through development and respond to external cues. Here we perform in vivo injection of alkyne- or azide-modified analogs of thymidine, uridine, methionine, and glucosamine to label nascent synthesis of DNA, RNA, protein, and glycosylation. Three-dimensional volumetric imaging of nascent macromolecule synthesis was performed in axolotl salamander tissue using whole-mount click chemistry-based fluorescent staining followed by light sheet fluorescent microscopy. We also developed an image processing pipeline for segmentation and classification of morphological regions of interest and individual cells, and we apply this pipeline to the regenerating humerus. We demonstrate our approach is sensitive to biological perturbations by measuring changes in DNA synthesis after limb denervation. This method provides a powerful means to quantitatively interrogate macromolecule synthesis in heterogenous tissues at the organ, cellular, and molecular levels of organization.


Sign in / Sign up

Export Citation Format

Share Document