scholarly journals Mammalian face as an evolutionary novelty

2021 ◽  
Vol 118 (44) ◽  
pp. e2111876118
Author(s):  
Hiroki Higashiyama ◽  
Daisuke Koyabu ◽  
Tatsuya Hirasawa ◽  
Ingmar Werneburg ◽  
Shigeru Kuratani ◽  
...  

The anterior end of the mammalian face is characteristically composed of a semimotile nose, not the upper jaw as in other tetrapods. Thus, the therian nose is covered ventrolaterally by the “premaxilla,” and the osteocranium possesses only a single nasal aperture because of the absence of medial bony elements. This stands in contrast to those in other tetrapods in whom the premaxilla covers the rostral terminus of the snout, providing a key to understanding the evolution of the mammalian face. Here, we show that the premaxilla in therian mammals (placentals and marsupials) is not entirely homologous to those in other amniotes; the therian premaxilla is a composite of the septomaxilla and the palatine remnant of the premaxilla of nontherian amniotes (including monotremes). By comparing topographical relationships of craniofacial primordia and nerve supplies in various tetrapod embryos, we found that the therian premaxilla is predominantly of the maxillary prominence origin and associated with mandibular arch. The rostral-most part of the upper jaw in nonmammalian tetrapods corresponds to the motile nose in therian mammals. During development, experimental inhibition of primordial growth demonstrated that the entire mammalian upper jaw mostly originates from the maxillary prominence, unlike other amniotes. Consistently, cell lineage tracing in transgenic mice revealed a mammalian-specific rostral growth of the maxillary prominence. We conclude that the mammalian-specific face, the muzzle, is an evolutionary novelty obtained by overriding ancestral developmental constraints to establish a novel topographical framework in craniofacial mesenchyme.

2021 ◽  
Author(s):  
Christine Hirschberger ◽  
J. Andrew Gillis

AbstractThe pseudobranch is a gill-like epithelial elaboration that sits behind the jaw of most fishes. This structure was classically regarded as a vestige of the ancestral gill-arch like condition of the gnathostome jaw. However, more recently, hypotheses of jaw evolution by transformation of a gill arch have been challenged, and the pseudobranch has alternatively been considered a specialised derivative of the second (hyoid) pharyngeal arch. Here, we demonstrate by cell lineage tracing in a cartilaginous fish, the skate (Leucoraja erinacea), that the pseudobranch does, in fact, derive from the mandibular arch, and that it shares gene expression features and cell types with gills. We also show that the mandibular arch pseudobranch is supported by a spiracular cartilage that is patterned by a shh-expressing epithelial signalling centre. This closely parallels the condition seen in the gill arches, where cartilaginous appendages called branchial rays supporting the respiratory lamellae of the gills are patterned by a shh-expressing gill arch epithelial ridge (GAER). Taken together, these findings support serial homology of the pseudobranch and gills, and an ancestral origin of gill arch-like anatomical features from the gnathostome mandibular arch.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ting Zhao ◽  
Shengfan Ye ◽  
Zimu Tang ◽  
Liwei Guo ◽  
Zhipeng Ma ◽  
...  

AbstractReactive oxygen species (ROS) stress has been demonstrated as potentially critical for induction and maintenance of cellular senescence, and been considered as a contributing factor in aging and in various neurological disorders including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). In response to low-level ROS stress, the expression of Δ133p53, a human p53 isoform, is upregulated to promote cell survival and protect cells from senescence by enhancing the expression of antioxidant genes. In normal conditions, the basal expression of Δ133p53 prevents human fibroblasts, T lymphocytes, and astrocytes from replicative senescence. It has been also found that brain tissues from AD and ALS patients showed decreased Δ133p53 expression. However, it is uncharacterized if Δ133p53 plays a role in brain aging. Here, we report that zebrafish Δ113p53, an ortholog of human Δ133p53, mainly expressed in some of the radial glial cells along the telencephalon ventricular zone in a full-length p53-dependent manner. EDU-labeling and cell lineage tracing showed that Δ113p53-positive cells underwent cell proliferation to contribute to the neuron renewal process. Importantly, Δ113p53M/M mutant telencephalon possessed less proliferation cells and more senescent cells compared to wild-type (WT) zebrafish telencephalon since 9-months old, which was associated with decreased antioxidant genes expression and increased level of ROS in the mutant telencephalon. More interestingly, unlike the mutant fish at 5-months old with cognition ability, Δ113p53M/M zebrafish, but not WT zebrafish, lost their learning and memory ability at 19-months old. The results demonstrate that Δ113p53 protects the brain from aging by its antioxidant function. Our finding provides evidence at the organism level to show that depletion of Δ113p53/Δ133p53 may result in long-term ROS stress, and finally lead to age-related diseases, such as AD and ALS in humans.


2011 ◽  
Vol 300 (2) ◽  
pp. F291-F300 ◽  
Author(s):  
R. Lance Miller

Transgenic mice have had a tremendous impact on biomedical research. Most researchers are familiar with transgenic mice that carry Cre recombinase (Cre) and how they are used to create conditional knockouts. However, some researchers are less familiar with many of the other types of transgenic mice and their applications. For example, transgenic mice can be used to study biochemical and molecular pathways in primary cultures and cell suspensions derived from transgenic mice, cell-cell interactions using multiple fluorescent proteins in the same mouse, and the cell cycle in real time and in the whole animal, and they can be used to perform deep tissue imaging in the whole animal, follow cell lineage during development and disease, and isolate large quantities of a pure cell type directly from organs. These novel transgenic mice and their applications provide the means for studying of molecular and biochemical events in the whole animal that was previously limited to cell cultures. In conclusion, transgenic mice are not just for generating knockouts.


2013 ◽  
Vol 3 (5) ◽  
pp. 851-863 ◽  
Author(s):  
Daniel L Mace ◽  
Peter Weisdepp ◽  
Louis Gevirtzman ◽  
Thomas Boyle ◽  
Robert H Waterston

Author(s):  
Markus Rempfler ◽  
Sanjeev Kumar ◽  
Valentin Stierle ◽  
Philipp Paulitschke ◽  
Bjoern Andres ◽  
...  
Keyword(s):  

Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 580-582 ◽  
Author(s):  
Isabel Punzon ◽  
Luis M. Criado ◽  
Alfredo Serrano ◽  
Fernando Serrano ◽  
Antonio Bernad

Abstract Human neo-organ formation from stem cells can only be assayed by in vivo xenotransplantation. The human nonobese diabetic–severe combined immunodeficient (HuNOD/scid) CD34+ cell transplantation is a model that allows examination of hematopoietic tissue formation, although human hematopoietic cell maturation is abortive. Conventional humanization of the cytokine microenvironment has depended on generation of human cytokine-transgenic mice in strains appropriate for conventional plasmid microinjection, followed by backcrossing, a costly and time-consuming approach. Lentiviral vector infection of single-cell embryos was recently reported to produce transgenic animals. Using this approach, we have generated direct human granulocyte-macrophage colony-stimulating factor (hGM-CSF) transgenic mice from lentivirus-microinjected NOD/scid embryos, with 68% efficiency and 100% penetrance; this allowed us to obtain NOD/scid transgenic mice with considerable savings of resources. This powerful technique should assist in producing novel mouse models for the study of human blood cell lineage development and other human neo-organs from stem cell xenotransplantation for which a similar “humanization” rationale may be required.


Sign in / Sign up

Export Citation Format

Share Document