Highly efficient lentiviral-mediated human cytokine transgenesis on the NOD/scid background

Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 580-582 ◽  
Author(s):  
Isabel Punzon ◽  
Luis M. Criado ◽  
Alfredo Serrano ◽  
Fernando Serrano ◽  
Antonio Bernad

Abstract Human neo-organ formation from stem cells can only be assayed by in vivo xenotransplantation. The human nonobese diabetic–severe combined immunodeficient (HuNOD/scid) CD34+ cell transplantation is a model that allows examination of hematopoietic tissue formation, although human hematopoietic cell maturation is abortive. Conventional humanization of the cytokine microenvironment has depended on generation of human cytokine-transgenic mice in strains appropriate for conventional plasmid microinjection, followed by backcrossing, a costly and time-consuming approach. Lentiviral vector infection of single-cell embryos was recently reported to produce transgenic animals. Using this approach, we have generated direct human granulocyte-macrophage colony-stimulating factor (hGM-CSF) transgenic mice from lentivirus-microinjected NOD/scid embryos, with 68% efficiency and 100% penetrance; this allowed us to obtain NOD/scid transgenic mice with considerable savings of resources. This powerful technique should assist in producing novel mouse models for the study of human blood cell lineage development and other human neo-organs from stem cell xenotransplantation for which a similar “humanization” rationale may be required.

2001 ◽  
Vol 75 (19) ◽  
pp. 9339-9344 ◽  
Author(s):  
Brian C. Lewis ◽  
Nachimuthu Chinnasamy ◽  
Richard A. Morgan ◽  
Harold E. Varmus

ABSTRACT We are using avian leukosis-sarcoma virus (ALSV) vectors to generate mouse tumor models in transgenic mice expressing TVA, the receptor for subgroup A ALSV. Like other classical retroviruses, ALSV requires cell division to establish a provirus after infection of host cells. In contrast, lentiviral vectors are capable of integrating their viral DNA into the genomes of nondividing cells. With the intention of initiating tumorigenesis in resting, TVA-positive cells, we have developed a system for the preparation of a human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector, pseudotyped with the envelope protein of ALSV subgroup A (EnvA). The HIV(ALSV-A) vector retains the requirement for TVA on the surface of target cells and can be produced at titers of 5 × 103 infectious units (IU)/ml. By inserting the central polypurine tract (cPPT) from the HIV-1 pol gene and removing the cytoplasmic tail of EnvA, the pseudotype can be produced at titers approaching 105 IU/ml and can be concentrated by ultracentrifugation to titers of 107 IU/ml. HIV(ALSV-A) also infects embryonic fibroblasts derived from transgenic mice in which TVA expression is driven by the β-actin promoter. In addition, this lentivirus pseudotype efficiently infects these fibroblasts after cell cycle arrest, when they are resistant to infection by ALSV vectors. This system may be useful for introducing genes into somatic cells in adult TVA transgenic animals and allows evaluation of the effects of altered gene expression in differentiated cell types in vivo.


1990 ◽  
Vol 10 (7) ◽  
pp. 3709-3716 ◽  
Author(s):  
T Jackson ◽  
M F Allard ◽  
C M Sreenan ◽  
L K Doss ◽  
S P Bishop ◽  
...  

During the maturation of the cardiac myocyte, a transition occurs from hyperplastic to hypertrophic growth. The factors that control this transition in the developing heart are unknown. Proto-oncogenes such as c-myc have been implicated in the regulation of cellular proliferation and differentiation, and in the heart the switch from myocyte proliferation to terminal differentiation is synchronous with a decrease in c-myc mRNA abundance. To determine whether c-myc can influence myocyte proliferation or differentiation, we examined the in vivo effect of increasing c-myc expression during embryogenesis and of preventing the decrease in c-myc mRNA expression that normally occurs during cardiac development. The model system used was a strain of transgenic mice exhibiting constitutive expression of c-myc mRNA in cardiac myocytes throughout development. In these transgenic mice, increased c-myc mRNA expression was found to be associated with both atrial and ventricular enlargement. This increase in cardiac mass was secondary to myocyte hyperplasia, with the transgenic hearts containing more than twice as many myocytes as did nontransgenic hearts. The results suggest that in the transgenic animals there is additional hyperplastic growth during fetal development. However, this additional proliferative growth is not reflected in abnormal myocyte maturation, as assessed by the expression of the cardiac and skeletal isoforms of alpha-actin. The results of this study indicate that constitutive expression of c-myc mRNA in the heart during development results in enhanced hyperplastic growth and suggest a regulatory role for this proto-oncogene in cardiac myogenesis.


1990 ◽  
Vol 10 (7) ◽  
pp. 3709-3716
Author(s):  
T Jackson ◽  
M F Allard ◽  
C M Sreenan ◽  
L K Doss ◽  
S P Bishop ◽  
...  

During the maturation of the cardiac myocyte, a transition occurs from hyperplastic to hypertrophic growth. The factors that control this transition in the developing heart are unknown. Proto-oncogenes such as c-myc have been implicated in the regulation of cellular proliferation and differentiation, and in the heart the switch from myocyte proliferation to terminal differentiation is synchronous with a decrease in c-myc mRNA abundance. To determine whether c-myc can influence myocyte proliferation or differentiation, we examined the in vivo effect of increasing c-myc expression during embryogenesis and of preventing the decrease in c-myc mRNA expression that normally occurs during cardiac development. The model system used was a strain of transgenic mice exhibiting constitutive expression of c-myc mRNA in cardiac myocytes throughout development. In these transgenic mice, increased c-myc mRNA expression was found to be associated with both atrial and ventricular enlargement. This increase in cardiac mass was secondary to myocyte hyperplasia, with the transgenic hearts containing more than twice as many myocytes as did nontransgenic hearts. The results suggest that in the transgenic animals there is additional hyperplastic growth during fetal development. However, this additional proliferative growth is not reflected in abnormal myocyte maturation, as assessed by the expression of the cardiac and skeletal isoforms of alpha-actin. The results of this study indicate that constitutive expression of c-myc mRNA in the heart during development results in enhanced hyperplastic growth and suggest a regulatory role for this proto-oncogene in cardiac myogenesis.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1031-1038 ◽  
Author(s):  
I. Nishijima ◽  
T. Nakahata ◽  
S. Watanabe ◽  
K. Tsuji ◽  
I. Tanaka ◽  
...  

Abstract Using a clonal assay of bone marrow (BM) cells from transgenic mice (Tg-mice) expressing the human granulocyte-macrophage colony-stimulating factor receptor (hGM-CSFR), we found in earlier studies that hGM-CSF alone supported the development not only of granulocyte-macrophage colonies, but also of erythrocytes, megakaryocytes, mast cells, blast cells, and mixed hematopoietic colonies. In this report, we evaluated the in vivo effects of hGM-CSF on hematopoietic and lymphopoietic responses in the hGM-CSFR Tg-mice. Administration of this factor to Tg-mice resulted in dose-dependent increases in numbers of reticulocytes and white blood cells (WBCs) in the peripheral blood. Morphological analysis of WBCs showed that the numbers of all types of the cell, including neutrophils, eosinophils, monocytes, and lymphocytes increased; the most remarkable being in lymphocytes that contained a number of large granular lymphocytes (LGLs) in addition to mature T and B cells. However, total cellularity of the BM of the Tg-mice decreased in a dose-dependent manner when hGM-CSF was injected. In sharp contrast to the BM, spleens of the Tg-mice were grossly enlarged. Although all types of blood cells and hematopoietic progenitors increased in the spleen, erythroid cells and their progenitors showed the most significant increase. Increased numbers of megakaryocytes and LGLs were also observed in spleen and liver of the treated Tg-mice. Flow cytometric analysis showed that LGLs expanded in Tg-mice expressed Mac-1+CD3−NK1.1+. The thymus of Tg-mice treated with hGM-CSF exhibited a dose-dependent shrinkage and a remarkable decrease in CD4+CD8+ cells. Thus, hGM-CSF stimulated not only myelopoiesis but also erythropoiesis and megakaryopoiesis of hGM-CSFR Tg-mice in vivo, in accordance with our reported in vitro findings. In addition, hGM-CSF affected the development of lymphoid cells, including natural killer cells of these Tg-mice.


Blood ◽  
1995 ◽  
Vol 86 (12) ◽  
pp. 4603-4611 ◽  
Author(s):  
JW Voncken ◽  
V Kaartinen ◽  
PK Pattengale ◽  
WT Germeraad ◽  
J Groffen ◽  
...  

DNA constructs encoding BCR/ABL P210 have been introduced into the mouse germ line using microinjection of one-cell fertilized eggs. Kinetics of BCR/ABL P210 expression in transgenic mice were very similar to those of BCR/ABL P190 constructs in transgenic mice. mRNA transcripts were detectable early in embryonic development and also in hematopoietic tissue of adult animals. Expression of BCR/ABL in peripheral blood preceded development of overt disease. P210 founder and progeny transgenic animals, when becoming ill, developed leukemia of B, T-lymphoid, or myeloid origin after a relatively long latency period. In contrast, P190-transgenic mice exclusively developed leukemia of B-cell origin, with a relatively short period of latency. The observed dissimilarities are most likely due to intrinsically different properties of the P190 and P210 oncoproteins and may also involve sequences that control transgene expression. The delayed progression of BCR/ABL P210-associated disease in the transgenic mice is consistent with the apparent indolence of human chronic myeloid leukemia during the chronic phase. We conclude that, in transgenic models, comparable expression of BCR/ABL P210 and BCR/ABL P190 results in clinically distinct conditions.


2004 ◽  
Vol 279 (50) ◽  
pp. 52535-52542 ◽  
Author(s):  
Matthew J. Chiocco ◽  
Laura Shapiro Kulnane ◽  
Linda Younkin ◽  
Steve Younkin ◽  
Geneviève Evin ◽  
...  

Amyloid-β (Aβ) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by β-secretase followed by γ-secretase cleavage. Identification of the primary β-secretase gene,BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Aβ metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating β-secretase expression and activity alters APP processing and Aβ metabolismin vivo. Genomic-basedBACE1transgenic mice were generated that overexpress humanBACE1mRNA and protein. The highest expressingBACE1transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing bothBACE1andAPPshow specific alterations in APP processing and age-dependent Aβ deposition. We observed elevated levels of Aβ isoforms as well as significant increases of Aβ deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for β-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation ofBACE1activity may play a significant role in AD pathogenesisin vivo.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1031-1038 ◽  
Author(s):  
I. Nishijima ◽  
T. Nakahata ◽  
S. Watanabe ◽  
K. Tsuji ◽  
I. Tanaka ◽  
...  

Using a clonal assay of bone marrow (BM) cells from transgenic mice (Tg-mice) expressing the human granulocyte-macrophage colony-stimulating factor receptor (hGM-CSFR), we found in earlier studies that hGM-CSF alone supported the development not only of granulocyte-macrophage colonies, but also of erythrocytes, megakaryocytes, mast cells, blast cells, and mixed hematopoietic colonies. In this report, we evaluated the in vivo effects of hGM-CSF on hematopoietic and lymphopoietic responses in the hGM-CSFR Tg-mice. Administration of this factor to Tg-mice resulted in dose-dependent increases in numbers of reticulocytes and white blood cells (WBCs) in the peripheral blood. Morphological analysis of WBCs showed that the numbers of all types of the cell, including neutrophils, eosinophils, monocytes, and lymphocytes increased; the most remarkable being in lymphocytes that contained a number of large granular lymphocytes (LGLs) in addition to mature T and B cells. However, total cellularity of the BM of the Tg-mice decreased in a dose-dependent manner when hGM-CSF was injected. In sharp contrast to the BM, spleens of the Tg-mice were grossly enlarged. Although all types of blood cells and hematopoietic progenitors increased in the spleen, erythroid cells and their progenitors showed the most significant increase. Increased numbers of megakaryocytes and LGLs were also observed in spleen and liver of the treated Tg-mice. Flow cytometric analysis showed that LGLs expanded in Tg-mice expressed Mac-1+CD3−NK1.1+. The thymus of Tg-mice treated with hGM-CSF exhibited a dose-dependent shrinkage and a remarkable decrease in CD4+CD8+ cells. Thus, hGM-CSF stimulated not only myelopoiesis but also erythropoiesis and megakaryopoiesis of hGM-CSFR Tg-mice in vivo, in accordance with our reported in vitro findings. In addition, hGM-CSF affected the development of lymphoid cells, including natural killer cells of these Tg-mice.


2019 ◽  
pp. 525-530
Author(s):  
N. Lipták ◽  
Z. Bősze ◽  
L. Hiripi

Green Fluorescent protein (GFP) transgenic animals are accepted tools for studying various physiological processes, including organ development and cell migration. However, several in vivo studies claimed that GFP may impair transgenic animals’ health. Glomerulosclerosis was observed in transgenic mice and rabbits with ubiquitous reporter protein expression. Heart-specific GFP expression evoked dilated cardiomyopathy and altered cardiac function in transgenic mouse and zebrafish lines, respectively. Moreover, growth retardation and increased axon swelling were observed in GFP and yellow fluorescent protein (YFP) transgenic mice, respectively. This review will focus on the potential drawbacks of the applications of GFP transgenic animals in biomedical research.


Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 4159-4165 ◽  
Author(s):  
Agnieszka P. Szremska ◽  
Lukas Kenner ◽  
Eva Weisz ◽  
Rene G. Ott ◽  
Emmanuelle Passegué ◽  
...  

Abstract The activator protein 1 (AP-1) member JunB has recently been implicated in leukemogenesis. Here we surveyed human lymphoma samples for expression of JunB and other AP-1 members (c-Jun, c-Fos, Fra1, JunD). JunB was strongly expressed in T-cell lymphomas, but non-Hodgkin B-cell lymphomas do not or only weakly express JunB. We therefore asked whether JunB acted as a negative regulator of B-cell development, proliferation, and transformation. We used transgenic mice that expressed JunB under the control of the ubiquitin C promoter; these displayed increased JunB levels in both B- and T-lymphoid cells. JunB transgenic cells of B-lymphoid, but not of T-lymphoid, origin responded poorly to mitogenic stimuli. Furthermore, JunB transgenic cells were found to be less susceptible to the transforming potential of the Abelson oncogene in vitro. In addition, overexpression of JunB partially protected transgenic mice against the oncogenic challenge in vivo. However, transformed B cells eventually escaped from the inhibitory effect of JunB: the proliferative response was similar in explanted tumor-derived cells from transgenic animals and those from wild-type controls. Our results identify JunB as a novel regulator of B-cell proliferation and transformation. (Blood. 2003;102:4159-4165)


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 961-961
Author(s):  
Albert Gruender ◽  
Kai Kaufmann ◽  
Tobias Hadlich ◽  
Thomas Günther ◽  
Roland Schüle ◽  
...  

Abstract Abstract 961 The transcription factor nuclear factor erythroid-2 (NF-E2) is expressed in hematopoietic stem cells as well as in myeloid, erythroid and megakaryocytic precursors. NF-E2 deficient mice display marked anemia at birth and die perinatally due to thrombopenia, demonstrating an essential role for NF-E2 in both in erythropoiesis and platelet formation. We have previously shown that NF-E2 is overexpressed in the vast majority of patients with Myeloproliferative Neoplasms (MPNs). However, the effect of augmented transcription factor activity has not been studied in vivo. We therefore engineered two independent transgenic mouse lines expressing human NF-E2 under the control of the vav-Promoter, which has previously been shown to direct transgene expression in hematopoietic stem cells as well as in precursor cells of all lineages. The two founder lines differed in the degree of NF-E2 overexpression displayed. While one line showed moderate overexpression (2 – 5-fold), the other line expressed human NF-E2 between 10 and 100-fold above the murine counterpart. Both lines paralleled observations in PV patients, where a wide range of NF-E2 overexpression was noted (median overexpression, 7-fold; range 2-fold to 40-fold; n = 59). The two founder lines show overlapping but distinct phenotypes. In both strains. moderately overexpressing NF-E2 transgenic mice (2 – 10-fold) invariably develop thrombocytosis with a latency of 14 months. In addition, megakaryocyte colony formation in the bone marrow is drastically increased. In contrast, thrombocytosis is not observed in the markedly overexpressing NF-E2 transgenic mice (above 20-fold). A similar inverse correlation between the degree of NF-E2 overexpression and platelet numbers was observed in MPN patients. In both strains, Epo-independent colony formation, a pathognomonic feature of polycythemia vera, is significantly increased in NF-E2 transgenic animals. Bone marrow histopathology shows findings characteristically seen in MPNs, including the presence of increased megakaryopoiesis with cytologically abnormal forms, often in clusters. Both NF-E2 transgenic strains display significantly increased mortality. Upon autopsy, between 15 and 20% of mice in both strains present with major gastrointestinal bleeding in conjunction with splenic atrophy. Spleen weight is reduced by over 50% (Transgenic mice: 49 +/-15 mg, wild type littermates 103 +/- 30 mg; p < 0.001, n = 8 each). One third of the remaining mice show moderate to marked splenomegaly (2 – 27 fold increase in spleen weight; mean: 434 mg, range: 124 – 2700 mg; p < 0.001 vs. wt littermates, n = 12). Histopathological examination of all spleens revealed mild to moderately expanded red pulp with increased numbers of iron containing histiocytes. This observation indicates increased red cell destruction and may explain the fact that neither hematocrit nor hemoglobin are elevated in NF-E2 transgenic animals. At 18 months of age, one mouse developed acute leukemia, which is currently being phenotyped. In summary, in a murine model moderate NF-E2 overexpression causes a phenotype resembling Essential Thrombocythemia. In addition, our preliminary data indicate that NF-E2 overexpression may predispose to the development of acute leukemia. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document