scholarly journals The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores

2021 ◽  
Vol 118 (42) ◽  
pp. e2114412118
Author(s):  
Masato Kato ◽  
Steven L. McKnight

The low-complexity (LC) domain of the fused in sarcoma (FUS) RNA binding protein self-associates in a manner causing phase separation from an aqueous environment. Incubation of the FUS LC domain under physiologically normal conditions of salt and pH leads to rapid formation of liquid-like droplets that mature into a gel-like state. Both examples of phase separation have enabled reductionist biochemical assays allowing discovery of an N-terminal region of 57 residues that assembles into a labile, cross-β structure. Here we provide evidence of a nonoverlapping, C-terminal region of the FUS LC domain that also forms specific cross-β interactions. We propose that biologic function of the FUS LC domain may operate via the mutually exclusive use of these N- and C-terminal cross-β cores. Neurodegenerative disease–causing mutations in the FUS LC domain are shown to imbalance the two cross-β cores, offering an unanticipated concept of LC domain function and dysfunction.

2021 ◽  
Author(s):  
Anna S. Bock ◽  
Anastasia C. Murthy ◽  
Wai Shing Tang ◽  
Nina Jovic ◽  
Frank Shewmaker ◽  
...  

Author(s):  
Wen Shao ◽  
Xianju Bi ◽  
Yixuan Pan ◽  
Boyang Gao ◽  
Jun Wu ◽  
...  

2017 ◽  
Vol 474 (8) ◽  
pp. 1417-1438 ◽  
Author(s):  
Alice Ford Harrison ◽  
James Shorter

Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid–liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.


2013 ◽  
Vol 288 (34) ◽  
pp. 24731-24741 ◽  
Author(s):  
Adam S. Mastrocola ◽  
Sang Hwa Kim ◽  
Anthony T. Trinh ◽  
Lance A. Rodenkirch ◽  
Randal S. Tibbetts

2010 ◽  
Vol 42 (9) ◽  
pp. 1408-1411 ◽  
Author(s):  
Shu Yang ◽  
Sadaf T. Warraich ◽  
Garth A. Nicholson ◽  
Ian P. Blair

Author(s):  
Jasmine Cubuk ◽  
Jhullian J. Alston ◽  
J. Jeremías Incicco ◽  
Sukrit Singh ◽  
Melissa D. Stuchell-Brereton ◽  
...  

AbstractThe SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.


2020 ◽  
Author(s):  
Nasiha S. Ahmed ◽  
Lucas M. Harrell ◽  
Jacob C. Schwartz

ABSTRACTEwing sarcoma is driven by fusion proteins containing a low complexity (LC) domain that is intrinsically disordered and a powerful transcriptional regulator. The most common fusion protein found in Ewing sarcoma, EWS-FLI1, takes its LC domain from the RNA-binding protein EWSR1 (Ewing Sarcoma RNA-binding protein 1) and a DNA-binding domain from the transcription factor FLI1 (Friend Leukemia Virus Integration 1). EWS-FLI1 binds RNA polymerase II (RNA Pol II) and can self-assemble through a process known as phase separation. The ability of self-oligomerizing RNA-binding proteins like EWSR1 to assemble into ribonucleoprotein granules in cells has received significant attention but the role of phase separation in EWS-FLI1 activity is less understood. We investigated the intersecting roles of EWSR1 and EWS-FLI1 to control gene expression and tumorigenic cell growth in Ewing sarcoma. We also studied interactions among EWS-FLI1, EWSR1, and RNA Pol II. We applied a crosslinking approach to demonstrate the incorporation of EWSR1 and RNA Pol II into protein granules in cells. We also identified protein granules in cells associated with the fusion protein, EWS-FLI1. Interactions through the LC domain, which allow EWS-FLI1 to bind EWSR1 and RNA Pol II, were found to be required for inclusion into the cellular granules observed by TEM. The physical characterization of EWS-FLI1 assemblies reported here offers insight into a large protein assembly that may allow EWS-FLI1 to engage its wide network of protein partners while driving tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document