scholarly journals Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs

2000 ◽  
Vol 97 (24) ◽  
pp. 13263-13268 ◽  
Author(s):  
A. F. Ochsenbein ◽  
D. D. Pinschewer ◽  
S. Sierro ◽  
E. Horvath ◽  
H. Hengartner ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1027-1027
Author(s):  
Natalie Bauer ◽  
Christina Hausl ◽  
Rafi U. Ahmad ◽  
Bernhard Baumgartner ◽  
Hans Peter Schwarz ◽  
...  

Abstract About 30% of patients with severe hemophilia A develop neutralizing antibodies against FVIII (FVIII inhibitors) following replacement therapy. The type of FVIII gene mutation as well as other predisposing genetic factors contribute to the inhibitor phenotype. Based on these findings, we asked if the genetic background modulates the long-term persistence of anti-FVIII antibodies and anti-FVIII antibody secreting plasma cells in the E17 murine hemophilia model. Furthermore, we asked if the recently described inhibition of memory-B-cell re-stimulation by high doses of FVIII is influenced by the genetic background of the murine model. E17 mice on two different genetic backgrounds (C57Bl/6J and Balb/c) were treated with four doses of 200 ng human FVIII at weekly intervals. Anti-FVIII antibodies and anti-FVIII antibody secreting plasma cells were followed up to 12 months after the last dose of FVIII. Antibody titers and subclasses of antibodies (IgM, IgG1, IgG2a, IgG2b, IgG3) were measured by ELISA. Antibody secreting plasma cells in spleen and bone marrow were detected by ELISPOT as described (Hausl et al., Thromb Haemost 2002). The re-stimulation of FVIII-specific memory B cells was studied as described recently (Hausl et al., Blood 2005). Anti-FVIII antibodies and anti-FVIII antibody secreting plasma cells were first detectable in E17 Balb/c mice. IgM antibodies in the circulation and IgM secreting plasma cells in the spleen were observed after the first dose of FVIII, IgG antibodies and IgG secreting plasma cells after the second dose. No anti-FVIII antibodies after the first dose of FVIII were observed in E17 C57BL/6J mice but both IgM and IgG antibodies as well as IgM and IgG producing plasma cells were detectable after the second dose of FVIII. The antibody response involved all IgG subclasses in both mouse strains. However, IgG1 was dominant in E17 Balb/c mice whereas IgG2a was dominant in E17 C57BL/6J mice. When the in vitro restimulation of FVIII-specific memory B cells was examined, similar patterns were observed for both mouse strains. Low concentrations of FVIII between 10 and 100 ng/ml FVIII restimulated memory B cells and induced their differentiation into antibody secreting plasma cells whereas high concentrations of FVIII between 1,000 and 20,000 ng/ml FVIII inhibited memory-B-cell-restimulation. These results indicate that the dose-dependent effect of FVIII on the restimulation of FVIII-specific memory B cells does not depend on the genetic background. The major difference between both hemophilic mouse strains was the amplitude of the anti-FVIII immune response. Peak titers of anti-FVIII antibodies and peak concentrations of anti-FVIII antibody secreting plasma cells in spleen and bone marrow were significantly higher in E17 C57BL/6J mice than in E17 Balb/c mice. Whether or not higher ELISA titers correlate with higher Bethesda titers of neutralizing antibodies is currently being investigated. Despite the substantial differences in the amplitude of the immune response, anti-FVIII antibodies and anti-FVIII antibody secreting plasma cells persisted for the whole observation period of 12 months after the last dose of FVIII in both mouse strains. We conclude that the amplitude of the anti-FVIII immune response in hemophilic mice is significantly different between E17 C57BL/6J and E17 Balb/c mice. However, the persistence of the immune response is comparable.


2021 ◽  
Author(s):  
Anne S. Lixenfeld ◽  
Inga Künsting ◽  
Emily L. Martin ◽  
Vera von Kopylow ◽  
Selina Lehrian ◽  
...  

AbstractTo treat the SARS-CoV-2 virus, that enters the body through the respiratory tract, different vaccines in particular against the SARS-CoV-2 spike (S)-protein have been developed or are in the development process. For the BioNTech / Pfizer mRNA vaccine BNT162b2, which is injected twice, protection against COVID-19 has been described for the first weeks after the second vaccination. The underlying mechanisms of defense and the long-term effectiveness of this vaccine against COVID-19 are currently under investigation.In addition to the induction of systemic antibodies (Abs), Ab responses in the respiratory tract would help to form a first line of defense against SARS-CoV-2. Furthermore, protection depends on Fab-part-dependent neutralizing capacities, however, Fc-part-mediated effector mechanisms might also be important. Long-term defense would be based on the induction of long-lived antibody-producing plasma cells (PCs) and memory B cells.Here, we established different assays to analyze anti-SARS-CoV-2-S IgG and IgA Abs in blood serum and saliva as well as SARS-CoV-2-S1-reactive IgG and IgA PCs and potential memory B cells in the blood of individuals upon their first immunization with BNT162b2.We show that the vaccine induces in particular anti-SARS-CoV-2-S IgG1 and IgG3 as well as IgA1 and in some individuals also IgG2 and IgA2 serum Abs. In the saliva, we found no anti-SARS-CoV-2-S IgA, but instead IgG Abs. Furthermore, we found SARS-CoV-2-S reactive IgG+ blood PCs and potential memory B cells as well as SARS-CoV-2-S reactive IgA+ PCs and/or potential memory B cells in some individuals.Our data suggest that the vaccine induces a promising CD4+ T cell-dependent systemic IgG1 and IgG3 Ab response with IgG+ PCs and potential memory B cells. In addition to the systemic IgG response, the systemic IgA and saliva IgG response might help to improve a first line of defense in the respiratory tract against SARS-CoV-2 and its mutants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fanny Luterbacher ◽  
Fanette Bernard ◽  
Frédéric Baleydier ◽  
Emmanuelle Ranza ◽  
Peter Jandus ◽  
...  

Rituximab (RTX) is an anti-CD20 monoclonal antibody that targets B cells—from the immature pre-B-cell stage in the bone marrow to mature circulating B cells—while preserving stem cells and plasma cells. It is used to treat autoimmune diseases, hematological malignancies, or complications after hematopoietic stem cell transplantation (HSCT). Its safety profile is acceptable; however, a subset of patients can develop persistent hypogammaglobulinemia and associated severe complications, especially in pediatric populations. We report the unrelated cases of two young men aged 17 and 22, presenting with persistent hypogammaglobulinemia more than 7 and 10 years after treatment with RTX, respectively, and administered after HSCT for hemolytic anemia and Epstein–Barr virus reactivation, respectively. Both patients’ immunological workups showed low levels of total immunoglobulin, vaccine antibodies, and class switched-memory B cells but an increase in naive B cells, which can also be observed in primary immunodeficiencies such as those making up common variable immunodeficiency. Whole exome sequencing for one of the patients failed to detect a pathogenic variant causing a Mendelian immunological disorder. Annual assessments involving interruption of immunoglobulin replacement therapy each summer failed to demonstrate the recovery of endogenous immunoglobulin production or normal numbers of class switched-memory B cells 7 and 10 years after the patients’ respective treatments with RTX. Although the factors that may lead to prolonged hypogammaglobulinemia after rituximab treatment (if necessary) remain unclear, a comprehensive immunological workup before treatment and long-term follow-up are mandatory to assess long-term complications, especially in children.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1614-1621 ◽  
Author(s):  
Marcus Odendahl ◽  
Henrik Mei ◽  
Bimba F. Hoyer ◽  
Annett M. Jacobi ◽  
Arne Hansen ◽  
...  

AbstractMaintenance of protective humoral immunity depends on the generation and survival of antibody-secreting cells. The bone marrow provides niches for long-term survival of plasma cells generated in the course of systemic immune responses in secondary lymphoid organs. Here, we have analyzed migratory human plasma blasts and plasma cells after secondary vaccination with tetanus toxin. On days 6 and 7 after immunization, CD19+/CD27high/intracellular immunoglobulin Ghigh (IgGhigh)/HLA-DRhigh/CD38high/CD20–/CD95+ tetanus toxin–specific antibody-secreting plasma blasts were released in large numbers from the secondary lymphoid organs into the blood. These cells show chemotactic responsiveness toward ligands for CXCR3 and CXCR4, probably guiding them to the bone marrow or inflamed tissue. At the same time, a population of CD19+/CD27high/intracellular IgGhigh/HLA-DRlow/CD38+/CD20–/CD95+ cells appeared in the blood in large numbers. These cells, with the phenotype of long-lived plasma cells, secreted antibodies of unknown specificity, not tetanus toxoid. The appearance of these plasma cells in the blood indicates successful competition for survival niches in the bone marrow between newly generated plasma blasts and resident plasma cells as a fundamental mechanism for the establishment of humoral memory and its plasticity.


2005 ◽  
Vol 201 (4) ◽  
pp. 545-554 ◽  
Author(s):  
Elizabeth J. Blink ◽  
Amanda Light ◽  
Axel Kallies ◽  
Stephen L. Nutt ◽  
Philip D. Hodgkin ◽  
...  

Immunization with a T cell–dependent antigen elicits production of specific memory B cells and antibody-secreting cells (ASCs). The kinetic and developmental relationships between these populations and the phenotypic forms they and their precursors may take remain unclear. Therefore, we examined the early stages of a primary immune response, focusing on the appearance of antigen-specific B cells in blood. Within 1 wk, antigen-specific B cells appear in the blood with either a memory phenotype or as immunoglobulin (Ig)G1 ASCs expressing blimp-1. The memory cells have mutated VH genes; respond to the chemokine CXCL13 but not CXCL12, suggesting recirculation to secondary lymphoid organs; uniformly express B220; show limited differentiation potential unless stimulated by antigen; and develop independently of blimp-1 expression. The antigen-specific IgG1 ASCs in blood show affinity maturation paralleling that of bone marrow ASCs, raising the possibility that this compartment is established directly by blood-borne ASCs. We find no evidence for a blimp-1–expressing preplasma memory compartment, suggesting germinal center output is restricted to ASCs and B220+ memory B cells, and this is sufficient to account for the process of affinity maturation.


2010 ◽  
Vol 185 (5) ◽  
pp. 3103-3110 ◽  
Author(s):  
Daniela Frölich ◽  
Claudia Giesecke ◽  
Henrik E. Mei ◽  
Karin Reiter ◽  
Capucine Daridon ◽  
...  
Keyword(s):  
B Cells ◽  

2018 ◽  
Vol 46 (9) ◽  
pp. 3970-3978 ◽  
Author(s):  
Shujun Guo ◽  
Qingqing Chen ◽  
Xiaoli Liang ◽  
Mimi Mu ◽  
Jing He ◽  
...  

Objective To investigate levels of regulatory B (Breg) cells, plasma cells, and memory B cells in the peripheral blood, and interleukin (IL)-10 in the serum of multiple sclerosis (MS) patients, and to determine the correlation between Breg cell levels and the Expanded Disability Status Scale (EDSS) score. Methods Levels of Breg cells, plasma cells, and memory B cells in the peripheral blood of 12 MS patients were measured using flow cytometry. IL-10 serum levels were measured by enzyme-linked immunosorbent assay. The correlation between Breg cell levels and MS EDSS score was measured using Pearson’s correlation coefficient. Results Compared with healthy controls, MS patients had decreased levels of CD19+CD24hiCD38hi Breg cells in their peripheral blood and reduced serum levels of IL-10; however, the ratios of CD19+CD27hiCD38hi plasma cells and CD19+CD27+CD24hi memory B cells to total B cells did not differ significantly between healthy controls and MS patients. CD19+CD24hiCD38hi Breg cell levels in the peripheral blood of MS patients were not significantly correlated with MS EDSS score. Conclusion Peripheral blood CD19+CD24hiCD38hi Breg cell levels and serum IL-10 levels were reduced in MS patients compared with controls, but Breg cell levels were not correlated with MS EDSS score.


2011 ◽  
Vol 208 (13) ◽  
pp. 2599-2606 ◽  
Author(s):  
Whitney E. Purtha ◽  
Thomas F. Tedder ◽  
Syd Johnson ◽  
Deepta Bhattacharya ◽  
Michael S. Diamond

Memory B cells (MBCs) and long-lived plasma cells (LLPCs) persist after clearance of infection, yet the specific and nonredundant role MBCs play in subsequent protection is unclear. After resolution of West Nile virus infection in mice, we demonstrate that LLPCs were specific for a single dominant neutralizing epitope, such that immune serum poorly inhibited a variant virus that encoded a mutation at this critical epitope. In contrast, a large fraction of MBC produced antibody that recognized both wild-type (WT) and mutant viral epitopes. Accordingly, antibody produced by the polyclonal pool of MBC neutralized WT and variant viruses equivalently. Remarkably, we also identified MBC clones that recognized the mutant epitope better than the WT protein, despite never having been exposed to the variant virus. The ability of MBCs to respond to variant viruses in vivo was confirmed by experiments in which MBCs were adoptively transferred or depleted before secondary challenge. Our data demonstrate that class-switched MBC can respond to variants of the original pathogen that escape neutralization of antibody produced by LLPC without a requirement for accumulating additional somatic mutations.


Sign in / Sign up

Export Citation Format

Share Document