scholarly journals Leukocyte migration inhibitory factor (LMIF) induced by concanavalin A: standardized microassay for production in vitro.

1975 ◽  
Vol 72 (8) ◽  
pp. 3197-3200 ◽  
Author(s):  
A. J. Gorski ◽  
B. Dupont ◽  
J. A. Hansen ◽  
R. A. Good
2007 ◽  
Vol 292 (1) ◽  
pp. E272-E280 ◽  
Author(s):  
Francesca Ietta ◽  
Yuanhong Wu ◽  
Roberta Romagnoli ◽  
Nima Soleymanlou ◽  
Barbara Orsini ◽  
...  

Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine involved in regulation of macrophage function. In addition, MIF may also play a role in murine and human reproduction. Although both first trimester trophoblast and decidua express MIF, the regulation and functional significance of this cytokine during human placental development remains unclear. We assessed MIF expression throughout normal human placental development, as well as in in vitro (chorionic villous explants) and in vivo (high altitude placentae) models of human placental hypoxia. Dimethyloxalylglycine (DMOG), which stabilizes hypoxia inducible factor-1 under normoxic conditions, was also used to mimic the effects of hypoxia on MIF expression. Quantitative real-time PCR and Western blot analysis showed high MIF protein and mRNA expression at 7–10 wk and lower levels at 11–12 wk until term. Exposure of villous explants to 3% O2 resulted in increased MIF expression and secretion relative to standard conditions (20% O2). DMOG treatment under 20% O2 increased MIF expression. In situ hybridization and immunohistochemistry showed elevated MIF expression in low oxygen-induced extravillous trophoblast cells. Finally, a significant increase in MIF transcript was observed in placental tissues from high-altitude pregnancies. Hence, three experimental models of placental hypoxia (early gestation, DMOG treatment, and high altitude) converge in stimulating increased MIF, supporting the conclusion that placental-derived MIF is an oxygen-responsive cytokine highly expressed in physiological in vivo and in in vitro low oxygen conditions.


2020 ◽  
Vol 64 (2) ◽  
Author(s):  
Carla Loreto ◽  
Rosario Caltabiano ◽  
Adriana Carol Eleonora Graziano ◽  
Sergio Castorina ◽  
Claudia Lombardo ◽  
...  

Fluoro-edenite (FE), an asbestiform fiber, is responsible for many respiratory pathologies: chronic obstructive diseases, pleural plaques, fibrosis, and malignant mesothelioma. Macrophage migration inhibitory factor (MIF) is one of the first cytokines produced in response to lung tissue damage. Heme oxygenase-1 (HO-1) is a protein with protective effects against oxidative stress. It is up regulated by several stimuli including pro-inflammatory cytokines and factors that promote oxidative stress. In this research, the in vivo model of sheep lungs naturally exposed to FE was studied in order to shed light on the pathophysiological events sustaining exposure to fibers, by determining immunohistochemical lung expression of MIF and HO-1. Protein levels expression of HO-1 and MIF were also evaluated in human primary lung fibroblasts after exposure to FE fibers in vitro. In exposed sheep lungs, MIF and HO-1 immunoexpression were spread involving the intraparenchymal stroma around bronchioles, interstitium between alveoli, alveolar epithelium and macrophages. High MIF immunoexpression prevails in macrophages. Similar results were obtained in vitro, but significantly higher values were only detected for HO-1 at concentrations of 50 and 100 μg/mL of FE fibers. MIF and HO-1 expressions seem to play a role in lung self-protection against uncontrolled chronic inflammation, thus counteracting the strong link with cancer development, induced by exposure to FE. Further studies will be conducted in order to add more information about the role of MIF and HO-1 in the toxicity FE-induced.


2019 ◽  
Vol 9 (10) ◽  
pp. 284 ◽  
Author(s):  
Eugenio Cavalli ◽  
Emanuela Mazzon ◽  
Santa Mammana ◽  
Maria Basile ◽  
Salvo Lombardo ◽  
...  

Neuroblastoma (NB) represents one of the most frequent pediatric solid tumors. Macrophage migration inhibitory factor (MIF) is a cytokine exerting multiple biological functions. More recently, a second member of the MIF family of cytokine has been identified, the D-dopachrome tautomerase (DDT), that exerts several overlapping functions with MIF. Growing evidence suggests a key role for MIF and DDT in the development of cancer. The aim of this study is to characterize the prognostic value of MIF and DDT in NB. We show that higher expression levels of MIF and DDT in Stage 4 NB samples are associated with a poorer prognosis, independently of the presence of MYCN amplification. Moreover, higher levels of MIF are mostly enriched by Th1 cells, while lower levels of MIF are associated with an increased proportion of B cells, Cytotoxic T cells, Dendritic cells and Natural Killer T cells. We also show that treatment with the histone deacetylase (HDAC) inhibitor, vorinostat, of the NB cell line, SH-SY5Y, determines a significant reduction in the expression of both MIF and DDT. Finally, MIF and DDT inhibition by short interfering RNA is able to revert vincristine sensitivity in vitro. Overall, our data suggest that MIF exert pro-tumorigenic properties in NB, likely by dampening antigen presentation and cytotoxic immune responses, and we propose the HDAC inhibitors as a potential therapeutic strategy for NB patients.


Sign in / Sign up

Export Citation Format

Share Document