scholarly journals Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase.

1996 ◽  
Vol 93 (22) ◽  
pp. 12637-12642 ◽  
Author(s):  
J. R. Pear ◽  
Y. Kawagoe ◽  
W. E. Schreckengost ◽  
D. P. Delmer ◽  
D. M. Stalker
Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 999-1007
Author(s):  
R G Gregerson ◽  
L Cameron ◽  
M McLean ◽  
P Dennis ◽  
J Strommer

Abstract In most higher plants the genes encoding alcohol dehydrogenase comprise a small gene family, usually with two members. The Adh1 gene of Petunia has been cloned and analyzed, but a second identifiable gene was not recovered from any of three genomic libraries. We have therefore employed the polymerase chain reaction to obtain the major portion of a second Adh gene. From sequence, mapping and northern data we conclude this gene encodes ADH2, the major anaerobically inducible Adh gene of Petunia. The availability of both Adh1 and Adh2 from Petunia has permitted us to compare their structures and patterns of expression to those of the well-studied Adh genes of maize, of which one is highly expressed developmentally, while both are induced in response to hypoxia. Despite their evolutionary distance, evidenced by deduced amino acid sequence as well as taxonomic classification, the pairs of genes are regulated in strikingly similar ways in maize and Petunia. Our findings suggest a significant biological basis for the regulatory strategy employed by these distant species for differential expression of multiple Adh genes.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1599
Author(s):  
Xiaoyu Zhu ◽  
Frédérique Tellier ◽  
Ying Gu ◽  
Shundai Li

In higher plants, cellulose is synthesized by membrane-spanning large protein complexes named cellulose synthase complexes (CSCs). In this study, the Arabidopsis PASTICCINO2 (PAS2) was identified as an interacting partner of cellulose synthases. PAS2 was previously characterized as the plant 3-hydroxy-acyl-CoA dehydratase, an ER membrane-localized dehydratase that is essential for very-long-chain-fatty acid (VLCFA) elongation. The pas2-1 mutants show defective cell elongation and reduction in cellulose content in both etiolated hypocotyls and light-grown roots. Although disruption of VLCFA synthesis by a genetic alteration had a reduction in VLCFA in both etiolated hypocotyls and light-grown roots, it had a differential effect on cellulose content in the two systems, suggesting the threshold level of VLCFA for efficient cellulose synthesis may be different in the two biological systems. pas2-1 had a reduction in both CSC delivery rate and CSC velocity at the PM in etiolated hypocotyls. Interestingly, Golgi but not post-Golgi endomembrane structures exhibited a severe defect in motility. Experiments using pharmacological perturbation of VLCFA content in etiolated hypocotyls strongly indicate a novel function of PAS2 in the regulation of CSC and Golgi motility. Through a combination of genetic, biochemical and cell biology studies, our study demonstrated that PAS2 as a multifunction protein has an important role in the regulation of cellulose biosynthesis in Arabidopsis hypocotyl.


2008 ◽  
Vol 19 (9) ◽  
pp. 3758-3768 ◽  
Author(s):  
Farnoush Parsaie Nasab ◽  
Benjamin L. Schulz ◽  
Francisco Gamarro ◽  
Armando J. Parodi ◽  
Markus Aebi

The transfer of lipid-linked oligosaccharide to asparagine residues of polypeptide chains is catalyzed by oligosaccharyltransferase (OTase). In most eukaryotes, OTase is a hetero-oligomeric complex composed of eight different proteins, in which the STT3 component is believed to be the catalytic subunit. In the parasitic protozoa Leishmania major, four STT3 paralogues, but no homologues to the other OTase components seem to be encoded in the genome. We expressed each of the four L. major STT3 proteins individually in Saccharomyces cerevisiae and found that three of them, LmSTT3A, LmSTT3B, and LmSTT3D, were able to complement a deletion of the yeast STT3 locus. Furthermore, LmSTT3D expression suppressed the lethal phenotype of single and double deletions in genes encoding other essential OTase subunits. LmSTT3 proteins did not incorporate into the yeast OTase complex but formed a homodimeric enzyme, capable of replacing the endogenous, multimeric enzyme of the yeast cell. Therefore, these protozoan OTases resemble the prokaryotic enzymes with respect to their architecture, but they used substrates typical for eukaryotic cells: N-X-S/T sequons in proteins and dolicholpyrophosphate-linked high mannose oligosaccharides.


2017 ◽  
Vol 51 (1) ◽  
pp. 8-17
Author(s):  
Ts. A. Padvitski ◽  
D. V. Galinousky ◽  
N. V. Anisimova ◽  
G. Ya. Baer ◽  
Ya. V. Pirko ◽  
...  

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1175e-1175
Author(s):  
Elizabeth Vierling

When plants experience high temperature stress, they respond by synthesizing a discrete set of proteins called heat shock proteins (HSPs). This response is not unique to plants, but is observed in all other eukaryotes. It is now known that the HSPs are evolutionarily conserved proteins, and furthermore, that HSPs function not only during stress, but also during normal growth and development. My laboratory has characterized several of the major groups of HSPs in higher plants. We have cloned genes encoding plant HSP70 proteins and low molecular weight (LMW) HSPs (17-23 kDa). Using this information we have investigated the expression of HSPs both in the field, and under laboratory conditions which mimic field situations. We have determined the temperature limits for expression of HSPs in vegetative tissues, and have also found that HSPs are frequently produced in plant reproductive structures, even in the absence of stress. As a first step toward understanding HSP function, we have characterized the intracellular localization of HSPs. Results show that there are unique HSPs in the cytoplasm, chloroplast and endomembrane system. These ubiquitous proteins appear to play essential roles in many cellular processes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fahimeh Shahinnia ◽  
Suresh Tula ◽  
Goetz Hensel ◽  
Narges Reiahisamani ◽  
Nasrin Nasr ◽  
...  

Chloroplasts, the sites of photosynthesis in higher plants, have evolved several means to tolerate short episodes of drought stress through biosynthesis of diverse metabolites essential for plant function, but these become ineffective when the duration of the stress is prolonged. Cyanobacteria are the closest bacterial homologs of plastids with two photosystems to perform photosynthesis and to evolve oxygen as a byproduct. The presence of Flv genes encoding flavodiiron proteins has been shown to enhance stress tolerance in cyanobacteria. In an attempt to support the growth of plants exposed to drought, the Synechocystis genes Flv1 and Flv3 were expressed in barley with their products being targeted to the chloroplasts. The heterologous expression of both Flv1 and Flv3 accelerated days to heading, increased biomass, promoted the number of spikes and grains per plant, and improved the total grain weight per plant of transgenic lines exposed to drought. Improved growth correlated with enhanced availability of soluble sugars, a higher turnover of amino acids and the accumulation of lower levels of proline in the leaf. Flv1 and Flv3 maintained the energy status of the leaves in the stressed plants by converting sucrose to glucose and fructose, immediate precursors for energy production to support plant growth under drought. The results suggest that sugars and amino acids play a fundamental role in the maintenance of the energy status and metabolic activity to ensure growth and survival under stress conditions, that is, water limitation in this particular case. Engineering chloroplasts by Flv genes into the plant genome, therefore, has the potential to improve plant productivity wherever drought stress represents a significant production constraint.


2003 ◽  
Vol 133 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Katsuyuki Tanaka ◽  
Kazumasa Murata ◽  
Muneo Yamazaki ◽  
Katsura Onosato ◽  
Akio Miyao ◽  
...  

Gene ◽  
2012 ◽  
Vol 494 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Hee Jin Kim ◽  
Barbara A. Triplett ◽  
Hong-Bin Zhang ◽  
Mi-Kyung Lee ◽  
Doug J. Hinchliffe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document