scholarly journals The DNA Binding Activity of C/EBP Transcription Factors Is Regulated in the G Phase of the Hepatocyte Cell Cycle

1995 ◽  
Vol 270 (30) ◽  
pp. 18123-18132 ◽  
Author(s):  
Basabi Rana ◽  
Yuhong Xie ◽  
David Mischoulon ◽  
Nancy L. R. Bucher ◽  
Stephen R. Farmer
1991 ◽  
Vol 11 (12) ◽  
pp. 5825-5831 ◽  
Author(s):  
F La Bella ◽  
N Heintz

Transcriptional regulation of mammalian histone genes during S phase is achieved through activation of specific factors which interact with subtype-specific histone gene promoter sequences. It has previously been shown that in HeLa cells this induction is not mediated by obligatory changes in the DNA binding activity of histone gene transcription factors as cells progress through the cell cycle. Recently, it has been reported that the DNA binding properties of a putative histone gene transcription factor may be quite different in normal and transformed cells (J. Holthuis, T. A. Owen, A. J. van Wijnen, K. L. Wright, A. Ramsey-Ewing, M. B. Kennedy, R. Carter, S. C. Cosenza, K. J. Soprano, J. B. Lian, J. L. Stein, and G. S. Stein, Science 247:1454-1457, 1990). To determine whether the properties of well-characterized histone gene transcription factors are altered in transformed versus normal cells, we have examined the DNA binding activity of human histone transcription factors during the WI38 (a primary line of normal human fetal lung fibroblasts) cell cycle. The results demonstrate that the properties of Oct1, H4TF1, and H4TF2 are similar in WI38 and HeLa cells and that their DNA binding activities are constitutive during interphase of both normal and transformed cell lines. Although it remains possible that these factors are directly or indirectly perturbed as a result of cellular transformation, it appears unlikely that transformation results in gross changes in DNA binding activity as cells progress toward division.


1991 ◽  
Vol 11 (12) ◽  
pp. 5825-5831
Author(s):  
F La Bella ◽  
N Heintz

Transcriptional regulation of mammalian histone genes during S phase is achieved through activation of specific factors which interact with subtype-specific histone gene promoter sequences. It has previously been shown that in HeLa cells this induction is not mediated by obligatory changes in the DNA binding activity of histone gene transcription factors as cells progress through the cell cycle. Recently, it has been reported that the DNA binding properties of a putative histone gene transcription factor may be quite different in normal and transformed cells (J. Holthuis, T. A. Owen, A. J. van Wijnen, K. L. Wright, A. Ramsey-Ewing, M. B. Kennedy, R. Carter, S. C. Cosenza, K. J. Soprano, J. B. Lian, J. L. Stein, and G. S. Stein, Science 247:1454-1457, 1990). To determine whether the properties of well-characterized histone gene transcription factors are altered in transformed versus normal cells, we have examined the DNA binding activity of human histone transcription factors during the WI38 (a primary line of normal human fetal lung fibroblasts) cell cycle. The results demonstrate that the properties of Oct1, H4TF1, and H4TF2 are similar in WI38 and HeLa cells and that their DNA binding activities are constitutive during interphase of both normal and transformed cell lines. Although it remains possible that these factors are directly or indirectly perturbed as a result of cellular transformation, it appears unlikely that transformation results in gross changes in DNA binding activity as cells progress toward division.


2008 ◽  
Vol 36 (10) ◽  
pp. 3341-3353 ◽  
Author(s):  
Paul Peixoto ◽  
Yang Liu ◽  
Sabine Depauw ◽  
Marie-Paule Hildebrand ◽  
David W. Boykin ◽  
...  

1997 ◽  
Vol 272 (3) ◽  
pp. L504-L511 ◽  
Author(s):  
I. Jaspers ◽  
E. Flescher ◽  
L. C. Chen

Ozone, one of the most reactive oxidant gases to which humans are routinely exposed, induces inflammation in the lower airways. The airway epithelium is one of the first targets that inhaled ozone will encounter, but its role in airway inflammation is not well understood. Expression of inducible genes involved in the inflammatory response, such as interleukin (IL)-8, is controlled by transcription factors. Expression of the IL-8 gene is regulated by the transcription factors nuclear factor (NF)-kappaB, NF-IL-6, and possibly activator protein-1 (AP-1). Type II-like epithelial cells (A549) were grown on a collagen-coated membrane and exposed in vitro to 0.1 ppm ozone or air. Exposure to ozone induced DNA-binding activity of NF-kappaB, NF-IL-6, and AP-1. IL-8 mRNA and IL-8 protein levels were also increased after ozone exposure. These results link ozone-induced DNA-binding activity of transcription factors and the production of IL-8 by epithelial cells thus demonstrating a potential cellular cascade resulting in the recruitment of inflammatory cells into the airway lumen.


2000 ◽  
Vol 275 (40) ◽  
pp. 31460-31468 ◽  
Author(s):  
M. Angélica Santana ◽  
Gustavo Pedraza-Alva ◽  
Norma Olivares-Zavaleta ◽  
Vicente Madrid-Marina ◽  
Vaclav Horejsi ◽  
...  

1998 ◽  
Vol 334 (1) ◽  
pp. 205-210 ◽  
Author(s):  
Georgios SABATAKOS ◽  
Gareth E. DAVIES ◽  
Maria GROSSE ◽  
Anthony CRYER ◽  
Dipak P. RAMJI

Transcription factors belonging to the CCAAT-enhancer binding protein (C/EBP) family have been implicated in the activation of gene expression in the mammary gland during lactation. We have therefore investigated the detailed expression profile of the C/EBP family during lactation and involution of the mouse mammary gland. The expression of C/EBPβ and C/EBPδ mRNA was low during lactation, increased dramatically at the beginning of involution and remained constant thereafter. In contrast, C/EBPα mRNA expression was relatively high during the early stages of lactation, declined to low levels during the late stages of lactation and at the start of involution, and increased again during involution. Electrophoretic mobility-shift assays showed a close correlation between the expression of the C/EBP genes and the functional C/EBP DNA-binding activity and, additionally, demonstrated the participation of heterodimers, formed from among the three proteins, in DNA–protein interactions. The DNA-binding activity of the activator protein 1 (AP1) family of transcription factors was also induced during involution. These results therefore point to potentially important regulatory roles for both the C/EBP and the AP1 family during lactation and involution of the mammary gland.


1998 ◽  
Vol 2 (4) ◽  
pp. 243-249 ◽  
Author(s):  
Koichiro Kako ◽  
Hisanori Wakamatsu ◽  
Toshiyuki Hamada ◽  
Marek Banasik ◽  
Keiko Ohata ◽  
...  

Author(s):  
Nili Feuerstein ◽  
James J. Mond ◽  
Paul R. Kinchington ◽  
Robert Hickey ◽  
Marja-Liisa Karjalainen Lindsberg ◽  
...  

Oncogene ◽  
2001 ◽  
Vol 20 (14) ◽  
pp. 1784-1792 ◽  
Author(s):  
Alina Cures ◽  
Colin House ◽  
Chie Kanei-Ishii ◽  
Bruce Kemp ◽  
Robert G Ramsay

2004 ◽  
Vol 24 (7) ◽  
pp. 2797-2807 ◽  
Author(s):  
Pablo Gómez-del Arco ◽  
Kazushige Maki ◽  
Katia Georgopoulos

ABSTRACT Ikaros is a key regulator of lymphocyte proliferative responses. Inactivating mutations in Ikaros cause antigen-mediated lymphocyte hyperproliferation and the rapid development of leukemia and lymphoma. Here we show that Ikaros's ability to negatively regulate the G1-S transition can be modulated by phosphorylation of a serine/threonine-rich conserved region (p1) in exon 8. Ikaros phosphorylation in p1 is induced during the G1-S transition. Mutations that prevent phosphorylation in p1 increase Ikaros's ability to impede cell cycle progression and its affinity for DNA. Casein kinase II, whose increased activity in lymphocytes leads to transformation, is a key player in Ikaros p1 phosphorylation. We thus propose that Ikaros's activity as a regulator of the G1-S transition is controlled by phosphorylation in response to signaling events that downmodulate its DNA binding activity.


Sign in / Sign up

Export Citation Format

Share Document