scholarly journals Phosphorylation Controls Ikaros's Ability To Negatively Regulate the G1-S Transition

2004 ◽  
Vol 24 (7) ◽  
pp. 2797-2807 ◽  
Author(s):  
Pablo Gómez-del Arco ◽  
Kazushige Maki ◽  
Katia Georgopoulos

ABSTRACT Ikaros is a key regulator of lymphocyte proliferative responses. Inactivating mutations in Ikaros cause antigen-mediated lymphocyte hyperproliferation and the rapid development of leukemia and lymphoma. Here we show that Ikaros's ability to negatively regulate the G1-S transition can be modulated by phosphorylation of a serine/threonine-rich conserved region (p1) in exon 8. Ikaros phosphorylation in p1 is induced during the G1-S transition. Mutations that prevent phosphorylation in p1 increase Ikaros's ability to impede cell cycle progression and its affinity for DNA. Casein kinase II, whose increased activity in lymphocytes leads to transformation, is a key player in Ikaros p1 phosphorylation. We thus propose that Ikaros's activity as a regulator of the G1-S transition is controlled by phosphorylation in response to signaling events that downmodulate its DNA binding activity.

1995 ◽  
Vol 15 (6) ◽  
pp. 3415-3423 ◽  
Author(s):  
E Suzuki ◽  
K Guo ◽  
M Kolman ◽  
Y T Yu ◽  
K Walsh

Vascular smooth muscle cells (VSMCs) reversibly coordinate the expression of VSMC-specific genes and the genes required for cell cycle progression. Here we demonstrate that isoforms of the MEF2/RSRF transcription factor are expressed in VSMCs and in vascular tissue. The MEF2A DNA-binding activity was upregulated when quiescent VSMCs were stimulated to proliferate with serum mitogens. The serum-induction of MEF2A DNA-binding activity occurred approximately 4 h following serum activation, and this correlated with an increase in the level of MEF2A protein without changes in the level of MEF2A mRNA or protein stability. These results indicate that MEF2A induction by serum is regulated at the level of translation.


2000 ◽  
Vol 20 (10) ◽  
pp. 3529-3537 ◽  
Author(s):  
Lei Zheng ◽  
Yumay Chen ◽  
Daniel J. Riley ◽  
Phang-Lang Chen ◽  
Wen-Hwa Lee

ABSTRACT Retinoblastoma protein (Rb) plays important roles in cell cycle progression and cellular differentiation. It may also participate in M phase events, although heretofore only circumstantial evidence has suggested such involvement. Here we show that Rb interacts, through an IxCxE motif and specifically during G2/M phase, with hsHec1p, a protein essential for proper chromosome segregation. The interaction between Rb and hsHec1p was reconstituted in a yeast strain in which human hsHEC1 rescues the null mutation of scHEC1. Expression of Rb reduced chromosome segregation errors fivefold in yeast cells sustained by a temperature-sensitive (ts) hshec1-113 allele and enhanced the ability of wild-type hsHec1p to suppress lethality caused by a ts smc1mutation. The interaction between Hec1p and Smc1p was important for the specific DNA-binding activity of Smc1p. Expression of Rb restored part of the inactivated function of hshec1-113p and thereby increased the DNA-binding activity of Smc1p. Rb thus increased the fidelity of chromosome segregation mediated by hsHec1p in a heterologous yeast system.


1990 ◽  
Vol 173 (3) ◽  
pp. 862-871 ◽  
Author(s):  
Odile Filhol ◽  
Claude Cochet ◽  
Edmond M. Chambaz

1997 ◽  
Vol 272 (21) ◽  
pp. 13489-13495 ◽  
Author(s):  
Susan A. Armstrong ◽  
Denise A. Barry ◽  
Robert W. Leggett ◽  
Christopher R. Mueller

Author(s):  
Nili Feuerstein ◽  
James J. Mond ◽  
Paul R. Kinchington ◽  
Robert Hickey ◽  
Marja-Liisa Karjalainen Lindsberg ◽  
...  

1996 ◽  
Vol 16 (7) ◽  
pp. 3698-3706 ◽  
Author(s):  
C L Wu ◽  
M Classon ◽  
N Dyson ◽  
E Harlow

Unregulated expression of the transcription factor E2F promotes the G1-to-S phase transition in cultured mammalian cells. However, there has been no direct evidence for an E2F requirement in this process. To demonstrate that E2F is obligatory for cell cycle progression, we attempted to inactivate E2F by overexpressing dominant-negative forms of one of its heterodimeric partners, DP-1. We dissected the functional domains of DP-1 and separated the region that facilitate heterodimer DNA binding from the E2F dimerization domain. Various DP-1 mutants were introduced into cells via transfection, and the cell cycle profile of the transfected cells was analyzed by flow cytometry. Expression of wild-type DP-1 or DP-1 mutants that bind to both DNA and E2F drove cells into S phase. In contrast, DP-1 mutants that retained E2F binding but lost DNA binding arrested cells in the G1 phase of the cell cycle. The DP-1 mutants that were unable to bind DNA resulted in transcriptionally inactive E2F complexes, suggesting that the G1 arrest is caused by formation of defective E2F heterodimers. Furthermore, the G1 arrest instigated by these DP-1 mutants could be rescued by coexpression of wild-type E2F or DP protein. These experiments define functional domains of DP and demonstrate a requirement for active E2F complexes in cell cycle progression.


Oncogene ◽  
2001 ◽  
Vol 20 (14) ◽  
pp. 1784-1792 ◽  
Author(s):  
Alina Cures ◽  
Colin House ◽  
Chie Kanei-Ishii ◽  
Bruce Kemp ◽  
Robert G Ramsay

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1090-1090
Author(s):  
Daniela Cilloni ◽  
Cristina Panuzzo ◽  
Francesca Messa ◽  
Francesca Arruga ◽  
Enrico Bracco ◽  
...  

Abstract The FoxO family of transcription factors is regulated by PI3K/Akt induced phosphorylation resulting in nuclear exclusion and degradation. Nuclear FoxO transcribes proapoptotic molecules and cell cycle inhibitors. In CML cells the TK activity of Bcr-Abl leads to the abnormal activation of downstream effectors including PI3K/Akt. The aim of this study was to investigate the role of FoxO3 in Bcr-Abl induced apoptotic arrest and cell growth and the effect of imatinib (IM) induced re-activation of FoxO3 activity in CML progenitor cells. BM cells were collected from 52 CML patients and 20 healthy donors. The expression level of FoxO3 was tested by RQ-PCR. The protein amount and localization was analyzed by Western blot and immunofluorescence, DNA binding activity was measured by EMSA. In addition, FoxO3 was analyzed in CML primary cells and CD34+ cells after IM incubation. Cell cycle and the expression levels of CD47, which has been demonstrated to increased during progression through the cell cycle and stem cell mobilization, was measured by FACS in CD34+ cell population. In addition K562 cells was transfected with pECE-FoxO3 to clarify FoxO3 effects on cell growth and apoptosis. Finally we used our already set up model of Drosophila melanogaster (Dm) transgenic for human Bcr-Abl to study the pathway leading to FoxO3 inactivation. We found that, despite either FoxO3 mRNA levels or protein amount are similar in CML cells compared to controls, FoxO3 protein is equally distributed in the nucleus and cytoplasm in controls but it is completely cytoplasmatic in CML cells and it enters the nucleus during in vivo IM treatment or in vitro IM incubation. Additionally, FoxO3 DNA binding activity in CML patients is completely absent at diagnosis and reappears after IM treatment. Moreover FoxO3 overexpression in transfected cells results into a 49±9 % reduction of proliferation which was further reduced of 75±5 % after IM incubation. Furthermore, we demonstrated that IM incubation results into the reactivation of FoxO3 in Ph+ CD34+ cells inducing quiescence into this population as demonstrated by the comparison of cell cycle kinetics and by a decreased expression of CD47. Finally, the progeny obtained from the crossbreeding of Bcr-Abl flies and flies transgenic for FoxO showed a rescue of FoxO phenotype demonstrating that FoxO inactivation is Bcr-Abl mediated. Overall, these in vitro and in vivo experiments suggest that FoxO3 is inactivated in CML cells and its delocalization is mainly dependant from Bcr-Abl activity. The antiproliferative activity of IM may be mediated by FoxO3 re-localization. On the other side, FoxO3 re-activation induced by IM results into a quiescence of Bcr-Abl CD34+ progenitor cells, which raises a hypothesis that FoxO3 could play a role in IM resistance. This investigation was conducted by CML Correlative Studies Network (CCSN), TOPS, which is sponsored by Novartis Oncology


Sign in / Sign up

Export Citation Format

Share Document