scholarly journals Mycobacteria excise DNA damage in 12- or 13-nucleotide-long oligomers by prokaryotic-type dual incisions and performs transcription-coupled repair

2020 ◽  
Vol 295 (50) ◽  
pp. 17374-17380 ◽  
Author(s):  
Christopher P. Selby ◽  
Laura A. Lindsey-Boltz ◽  
Yanyan Yang ◽  
Aziz Sancar

In nucleotide excision repair, bulky DNA lesions such as UV-induced cyclobutane pyrimidine dimers are removed from the genome by concerted dual incisions bracketing the lesion, followed by gap filling and ligation. So far, two dual-incision patterns have been discovered: the prokaryotic type, which removes the damage in 11–13-nucleotide-long oligomers, and the eukaryotic type, which removes the damage in 24–32-nucleotide-long oligomers. However, a recent study reported that the UvrC protein of Mycobacterium tuberculosis removes damage in a manner analogous to yeast and humans in a 25-mer oligonucleotide arising from incisions at 15 nt from the 3´ end and 9 nt from the 5´ end flanking the damage. To test this model, we used the in vivo excision assay and the excision repair sequencing genome-wide repair mapping method developed in our laboratory to determine the repair pattern and genome-wide repair map of Mycobacterium smegmatis. We find that M. smegmatis, which possesses homologs of the Escherichia coli uvrA, uvrB, and uvrC genes, removes cyclobutane pyrimidine dimers from the genome in a manner identical to the prokaryotic pattern by incising 7 nt 5´ and 3 or 4 nt 3´ to the photoproduct, and performs transcription-coupled repair in a manner similar to E. coli.

2016 ◽  
Vol 113 (17) ◽  
pp. 4706-4710 ◽  
Author(s):  
Fazile Canturk ◽  
Muhammet Karaman ◽  
Christopher P. Selby ◽  
Michael G. Kemp ◽  
Gulnihal Kulaksiz-Erkmen ◽  
...  

Plants use light for photosynthesis and for various signaling purposes. The UV wavelengths in sunlight also introduce DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)PPs] that must be repaired for the survival of the plant. Genome sequencing has revealed the presence of genes for both CPD and (6-4)PP photolyases, as well as genes for nucleotide excision repair in plants, such asArabidopsisand rice. Plant photolyases have been purified, characterized, and have been shown to play an important role in plant survival. In contrast, even though nucleotide excision repair gene homologs have been found in plants, the mechanism of nucleotide excision repair has not been investigated. Here we used the in vivo excision repair assay developed in our laboratory to demonstrate thatArabidopsisremoves CPDs and (6-4)PPs by a dual-incision mechanism that is essentially identical to the mechanism of dual incisions in humans and other eukaryotes, in which oligonucleotides with a mean length of 26–27 nucleotides are removed by incising ∼20 phosphodiester bonds 5′ and 5 phosphodiester bonds 3′ to the photoproduct.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1466 ◽  
Author(s):  
Barbara N. Borsos ◽  
Hajnalka Majoros ◽  
Tibor Pankotai

Nucleotide excision repair (NER) is a versatile DNA repair pathway which can be activated in response to a broad spectrum of UV-induced DNA damage, such as bulky adducts, including cyclobutane-pyrimidine dimers (CPDs) and 6–4 photoproducts (6–4PPs). Based on the genomic position of the lesion, two sub-pathways can be defined: (I) global genomic NER (GG-NER), involved in the ablation of damage throughout the whole genome regardless of the transcription activity of the damaged DNA locus, and (II) transcription-coupled NER (TC-NER), activated at DNA regions where RNAPII-mediated transcription takes place. These processes are tightly regulated by coordinated mechanisms, including post-translational modifications (PTMs). The fine-tuning modulation of the balance between the proteins, responsible for PTMs, is essential to maintain genome integrity and to prevent tumorigenesis. In this review, apart from the other substantial PTMs (SUMOylation, PARylation) related to NER, we principally focus on reversible ubiquitylation, which involves E3 ubiquitin ligase and deubiquitylase (DUB) enzymes responsible for the spatiotemporally precise regulation of NER.


2003 ◽  
Vol 31 (3) ◽  
pp. 694-698 ◽  
Author(s):  
S. McCready ◽  
L. Marcello

Halobacterium is one of the few known Archaea that tolerates high levels of sunlight in its natural environment. Photoreactivation is probably its most important strategy for surviving UV irradiation and we have shown that both of the major UV photoproducts, cyclobutane pyrimidine dimers (CPDs) and (6–4) photoproducts, can be very efficiently repaired by photoreactivation in this organism. There are two putative photolyase gene homologues in the published genome sequence of Halobacterium sp. NRC-1. We have made a mutant deleted in one of these, phr2, and confirmed that this gene codes for a CPD photolyase. (6–4) photoproducts are still photoreactivated in the mutant so we are currently establishing whether the other homologue, phr1, codes for a (6–4) photolyase. We have also demonstrated an excision repair capacity that operates in the absence of visible light but the nature of this pathway is not yet known. There is probably a bacteria-type excision-repair mechanism, since homologues of uvrA, uvrB, uvrC and uvrD have been identified in the Halobacterium genome. However, there are also homologues of eukaryotic nucleotide-excision-repair genes (Saccharomy cescerevisiae RAD3, RAD25 and RAD2) so there may be multiple repair mechanisms for UV damage in Halobacterium.


2012 ◽  
Vol 199 (2) ◽  
pp. 235-249 ◽  
Author(s):  
Alex Pines ◽  
Mischa G. Vrouwe ◽  
Jurgen A. Marteijn ◽  
Dimitris Typas ◽  
Martijn S. Luijsterburg ◽  
...  

The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damaged chromatin through the activity of PARP1, resulting in the recruitment of the chromatin-remodeling enzyme ALC1. Depletion of ALC1 rendered cells sensitive to UV and impaired repair of UV-induced DNA lesions. Additionally, DDB2 itself was targeted by poly(ADP-ribosyl)ation, resulting in increased protein stability and a prolonged chromatin retention time. Our in vitro and in vivo data support a model in which poly(ADP-ribosyl)ation of DDB2 suppresses DDB2 ubiquitylation and outline a molecular mechanism for PARP1-mediated regulation of NER through DDB2 stabilization and recruitment of the chromatin remodeler ALC1.


1995 ◽  
Vol 15 (8) ◽  
pp. 4572-4577 ◽  
Author(s):  
G A Freyer ◽  
S Davey ◽  
J V Ferrer ◽  
A M Martin ◽  
D Beach ◽  
...  

DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1173
Author(s):  
Marie Christine Martens ◽  
Steffen Emmert ◽  
Lars Boeckmann

The nucleotide excision repair (NER) is essential for the repair of ultraviolet (UV)-induced DNA damage, such as cyclobutane pyrimidine dimers (CPDs) and 6,4-pyrimidine-pyrimidone dimers (6,4-PPs). Alterations in genes of the NER can lead to DNA damage repair disorders such as Xeroderma pigmentosum (XP). XP is a rare autosomal recessive genetic disorder associated with UV-sensitivity and early onset of skin cancer. Recently, extensive research has been conducted on the functional relevance of splice variants and their relation to cancer. Here, we focus on the functional relevance of alternative splice variants of XP genes.


1989 ◽  
Vol 9 (11) ◽  
pp. 4767-4776
Author(s):  
G B Sancar ◽  
F W Smith

The PHR1 gene of Saccharomyces cerevisiae encodes a DNA photolyase that catalyzes the light-dependent repair of pyrimidine dimers. In the absence of photoreactivating light, this enzyme binds to pyrimidine dimers but is unable to repair them. We have assessed the effect of bound photolyase on the dark survival of yeast cells carrying mutations in genes that eliminate either nucleotide excision repair (RAD2) or mutagenic repair (RAD18). We found that a functional PHR1 gene enhanced dark survival in a rad18 background but failed to do so in a rad2 or rad2 rad18 background and therefore conclude that photolyase stimulates specifically nucleotide excision repair of dimers in S. cerevisiae. This effect is similar to the effect of Escherichia coli photolyase on excision repair in the bacterium. However, despite the functional and structural similarities between yeast photolyase and the E. coli enzyme and complementation of the photoreactivation deficiency of E. coli phr mutants by PHR1, yeast photolyase failed to enhance excision repair in the bacterium. Instead, Phr1 was found to be a potent inhibitor of dark repair in recA strains but had no effect in uvrA strains. The results of in vitro experiments indicate that inhibition of nucleotide excision repair results from competition between yeast photolyase and ABC excision nuclease for binding at pyrimidine dimers. In addition, the A and B subunits of the excision nuclease, when allowed to bind to dimers before photolyase, suppressed photoreactivation by Phr1. We propose that enhancement of nucleotide excision repair by photolyases is a general phenomenon and that photolyase should be considered an accessory protein in this pathway.


2003 ◽  
Vol 23 (2) ◽  
pp. 754-761 ◽  
Author(s):  
Huyong Zheng ◽  
Xin Wang ◽  
Amy J. Warren ◽  
Randy J. Legerski ◽  
Rodney S. Nairn ◽  
...  

ABSTRACT Interstrand cross-links (ICLs) make up a unique class of DNA lesions in which both strands of the double helix are covalently joined, precluding strand opening during replication and transcription. The repair of DNA ICLs has become a focus of study since ICLs are recognized as the main cytotoxic lesion inflicted by an array of alkylating compounds used in cancer treatment. As is the case for double-strand breaks, a damage-free homologous copy is essential for the removal of ICLs in an error-free manner. However, recombination-independent mechanisms may exist to remove ICLs in an error-prone fashion. We have developed an in vivo reactivation assay that can be used to examine the removal of site-specific mitomycin C-mediated ICLs in mammalian cells. We found that the removal of the ICL from the reporter substrate could take place in the absence of undamaged homologous sequences in repair-proficient cells, suggesting a cross-link repair mechanism that is independent of homologous recombination. Systematic analysis of nucleotide excision repair mutants demonstrated the involvement of transcription-coupled nucleotide excision repair and a partial requirement for the lesion bypass DNA polymerase η encoded by the human POLH gene. From these observations, we propose the existence of a recombination-independent and mutagenic repair pathway for the removal of ICLs in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document