scholarly journals Subunit Composition and Substrate Specificity of a MOF-containing Histone Acetyltransferase Distinct from the Male-specific Lethal (MSL) Complex

2009 ◽  
Vol 285 (7) ◽  
pp. 4268-4272 ◽  
Author(s):  
Yong Cai ◽  
Jingji Jin ◽  
Selene K. Swanson ◽  
Michael D. Cole ◽  
Seung Hyuk Choi ◽  
...  
Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1825-1832 ◽  
Author(s):  
Barbara P Rattner ◽  
Victoria H Meller

Abstract The MSL complex of Drosophila upregulates transcription of the male X chromosome, equalizing male and female X-linked gene expression. Five male-specific lethal proteins and at least one of the two noncoding roX RNAs are essential for this process. The roX RNAs are required for the localization of MSL complexes to the X chromosome. Although the mechanisms directing targeting remain speculative, the ratio of MSL protein to roX RNA influences localization of the complex. We examine the transcriptional regulation of the roX genes and show that MSL2 controls male-specific roX expression in the absence of any other MSL protein. We propose that this mechanism maintains a stable MSL/roX ratio that is favorable for localization of the complex to the X chromosome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aimei Dai ◽  
Yushuai Wang ◽  
Anthony Greenberg ◽  
Zhongqi Liufu ◽  
Tian Tang

How pleiotropy influences evolution of protein sequence remains unclear. The male-specific lethal (MSL) complex in Drosophila mediates dosage compensation by 2-fold upregulation of the X chromosome in males. Nevertheless, several MSL proteins also bind autosomes and likely perform functions not related to dosage compensation. Here, we study the evolution of MOF, MSL1, and MSL2 biding sites in Drosophila melanogaster and its close relative Drosophila simulans. We found pervasive expansion of the MSL binding sites in D. melanogaster, particularly on autosomes. The majority of these newly-bound regions are unlikely to function in dosage compensation and associated with an increase in expression divergence between D. melanogaster and D. simulans. While dosage-compensation related sites show clear signatures of adaptive evolution, these signatures are even more marked among autosomal regions. Our study points to an intriguing avenue of investigation of pleiotropy as a mechanism promoting rapid protein sequence evolution.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 323
Author(s):  
Samaneh Ekhteraei-Tousi ◽  
Jacob Lewerentz ◽  
Jan Larsson

Chromosome-specific regulatory mechanisms provide a model to understand the coordinated regulation of genes on entire chromosomes or on larger genomic regions. In fruit flies, two chromosome-wide systems have been characterized: The male-specific lethal (MSL) complex, which mediates dosage compensation and primarily acts on the male X-chromosome, and Painting of fourth (POF), which governs chromosome-specific regulation of genes located on the 4th chromosome. How targeting of one specific chromosome evolves is still not understood; but repeated sequences, in forms of satellites and transposable elements, are thought to facilitate the evolution of chromosome-specific targeting. The highly repetitive 1.688 satellite has been functionally connected to both these systems. Considering the rapid evolution and the necessarily constant adaptation of regulatory mechanisms, such as dosage compensation, we hypothesised that POF and/or 1.688 may still show traces of dosage-compensation functions. Here, we test this hypothesis by transcriptome analysis. We show that loss of Pof decreases not only chromosome 4 expression but also reduces the X-chromosome expression in males. The 1.688 repeat deletion, Zhr1 (Zygotic hybrid rescue), does not affect male dosage compensation detectably; however, Zhr1 in females causes a stimulatory effect on X-linked genes with a strong binding affinity to the MSL complex (genes close to high-affinity sites). Lack of pericentromeric 1.688 also affected 1.688 expression in trans and was linked to the differential expression of genes involved in eggshell formation. We discuss our results with reference to the connections between POF, the 1.688 satellite and dosage compensation, and the role of the 1.688 satellite in hybrid lethality.


Open Biology ◽  
2014 ◽  
Vol 4 (3) ◽  
pp. 140006 ◽  
Author(s):  
Kyle A. McElroy ◽  
Hyuckjoon Kang ◽  
Mitzi I. Kuroda

Chromatin-binding proteins must navigate the complex nuclear milieu to find their sites of action, and a constellation of protein factors and other properties are likely to influence targeting specificity. Despite considerable progress, the precise rules by which binding specificity is achieved have remained elusive. Here, we consider early targeting events for two groups of chromatin-binding complexes in Drosophila : the Male-Specific Lethal (MSL) and the Polycomb group (PcG) complexes. These two serve as models for understanding targeting, because they have been extensively studied and play vital roles in Drosophila , and their targets have been documented at high resolution. Furthermore, the proteins and biochemical properties of both complexes are largely conserved in multicellular organisms, including humans. While the MSL complex increases gene expression and PcG members repress genes, the two groups share many similarities such as the ability to modify their chromatin environment to create active or repressive domains, respectively. With legacies of in-depth genetic, biochemical and now genomic approaches, the MSL and PcG complexes will continue to provide tractable systems for understanding the recruitment of multiprotein chromatin complexes to their target loci.


genesis ◽  
2005 ◽  
Vol 43 (4) ◽  
pp. 213-215 ◽  
Author(s):  
Stephanie Lerach ◽  
Weiguo Zhang ◽  
Huai Deng ◽  
Xiaomin Bao ◽  
Jack Girton ◽  
...  

2018 ◽  
Author(s):  
Evgeniya Tikhonova ◽  
Anna Fedotova ◽  
Artem Bonchuk ◽  
Vladic Mogila ◽  
Erica N. Larschan ◽  
...  

AbstractThe binding of Drosophila male-specific lethal (MSL) dosage compensation complex exclusively to male X chromosome provides an excellent model system to understand mechanisms of selective recruitment of protein complexes to chromatin. Previous studies showed that the male-specific organizer of the complex, MSL2, and ubiquitous DNA-binding protein CLAMP are key players in the specificity of X chromosome binding. The CXC domain of MSL2 binds to genomic sites of MSL complex recruitment. Here we demonstrated that MSL2 directly interacts with the N-terminal zinc-finger domain of CLAMP. CLAMP-MSL2 and CXC-DNA interactions are cooperatively involved in recruitment of MSL complex to the X chromosome.


2000 ◽  
Vol 149 (5) ◽  
pp. 1005-1010 ◽  
Author(s):  
Ye Jin ◽  
Yanming Wang ◽  
Jørgen Johansen ◽  
Kristen M. Johansen

JIL-1 is a novel chromosomal kinase that is upregulated almost twofold on the male X chromosome in Drosophila. Here we demonstrate that JIL-1 colocalizes and physically interacts with male specific lethal (MSL) dosage compensation complex proteins. Furthermore, ectopic expression of the MSL complex directed by MSL2 in females causes a concomitant upregulation of JIL-1 to the female X that is abolished in msl mutants unable to assemble the complex. Thus, these results strongly indicate JIL-1 associates with the MSL complex and further suggests JIL-1 functions in signal transduction pathways regulating chromatin structure.


Sign in / Sign up

Export Citation Format

Share Document