Drosophila Male-Specific Lethal 2 Protein Controls Sex-Specific Expression of the roX Genes

Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1825-1832 ◽  
Author(s):  
Barbara P Rattner ◽  
Victoria H Meller

Abstract The MSL complex of Drosophila upregulates transcription of the male X chromosome, equalizing male and female X-linked gene expression. Five male-specific lethal proteins and at least one of the two noncoding roX RNAs are essential for this process. The roX RNAs are required for the localization of MSL complexes to the X chromosome. Although the mechanisms directing targeting remain speculative, the ratio of MSL protein to roX RNA influences localization of the complex. We examine the transcriptional regulation of the roX genes and show that MSL2 controls male-specific roX expression in the absence of any other MSL protein. We propose that this mechanism maintains a stable MSL/roX ratio that is favorable for localization of the complex to the X chromosome.

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 323
Author(s):  
Samaneh Ekhteraei-Tousi ◽  
Jacob Lewerentz ◽  
Jan Larsson

Chromosome-specific regulatory mechanisms provide a model to understand the coordinated regulation of genes on entire chromosomes or on larger genomic regions. In fruit flies, two chromosome-wide systems have been characterized: The male-specific lethal (MSL) complex, which mediates dosage compensation and primarily acts on the male X-chromosome, and Painting of fourth (POF), which governs chromosome-specific regulation of genes located on the 4th chromosome. How targeting of one specific chromosome evolves is still not understood; but repeated sequences, in forms of satellites and transposable elements, are thought to facilitate the evolution of chromosome-specific targeting. The highly repetitive 1.688 satellite has been functionally connected to both these systems. Considering the rapid evolution and the necessarily constant adaptation of regulatory mechanisms, such as dosage compensation, we hypothesised that POF and/or 1.688 may still show traces of dosage-compensation functions. Here, we test this hypothesis by transcriptome analysis. We show that loss of Pof decreases not only chromosome 4 expression but also reduces the X-chromosome expression in males. The 1.688 repeat deletion, Zhr1 (Zygotic hybrid rescue), does not affect male dosage compensation detectably; however, Zhr1 in females causes a stimulatory effect on X-linked genes with a strong binding affinity to the MSL complex (genes close to high-affinity sites). Lack of pericentromeric 1.688 also affected 1.688 expression in trans and was linked to the differential expression of genes involved in eggshell formation. We discuss our results with reference to the connections between POF, the 1.688 satellite and dosage compensation, and the role of the 1.688 satellite in hybrid lethality.


Open Biology ◽  
2014 ◽  
Vol 4 (3) ◽  
pp. 140006 ◽  
Author(s):  
Kyle A. McElroy ◽  
Hyuckjoon Kang ◽  
Mitzi I. Kuroda

Chromatin-binding proteins must navigate the complex nuclear milieu to find their sites of action, and a constellation of protein factors and other properties are likely to influence targeting specificity. Despite considerable progress, the precise rules by which binding specificity is achieved have remained elusive. Here, we consider early targeting events for two groups of chromatin-binding complexes in Drosophila : the Male-Specific Lethal (MSL) and the Polycomb group (PcG) complexes. These two serve as models for understanding targeting, because they have been extensively studied and play vital roles in Drosophila , and their targets have been documented at high resolution. Furthermore, the proteins and biochemical properties of both complexes are largely conserved in multicellular organisms, including humans. While the MSL complex increases gene expression and PcG members repress genes, the two groups share many similarities such as the ability to modify their chromatin environment to create active or repressive domains, respectively. With legacies of in-depth genetic, biochemical and now genomic approaches, the MSL and PcG complexes will continue to provide tractable systems for understanding the recruitment of multiprotein chromatin complexes to their target loci.


2018 ◽  
Author(s):  
Evgeniya Tikhonova ◽  
Anna Fedotova ◽  
Artem Bonchuk ◽  
Vladic Mogila ◽  
Erica N. Larschan ◽  
...  

AbstractThe binding of Drosophila male-specific lethal (MSL) dosage compensation complex exclusively to male X chromosome provides an excellent model system to understand mechanisms of selective recruitment of protein complexes to chromatin. Previous studies showed that the male-specific organizer of the complex, MSL2, and ubiquitous DNA-binding protein CLAMP are key players in the specificity of X chromosome binding. The CXC domain of MSL2 binds to genomic sites of MSL complex recruitment. Here we demonstrated that MSL2 directly interacts with the N-terminal zinc-finger domain of CLAMP. CLAMP-MSL2 and CXC-DNA interactions are cooperatively involved in recruitment of MSL complex to the X chromosome.


Genetics ◽  
1993 ◽  
Vol 134 (2) ◽  
pp. 545-557 ◽  
Author(s):  
M J Palmer ◽  
V A Mergner ◽  
R Richman ◽  
J E Manning ◽  
M I Kuroda ◽  
...  

Abstract Male-specific lethal-one (msl-1) is one of four genes that are required for dosage compensation in Drosophila males. To determine the molecular basis of msl-1 regulation of dosage compensation, we have cloned the gene and characterized its products. The predicted msl-1 protein (MSL-1) has no significant similarity to proteins in the current data bases but contains an acidic N terminus characteristic of proteins involved in transcription and chromatin modeling. We present evidence that the msl-1 protein is associated with hundreds of sites along the length of the X chromosome in male, but not in female, nuclei. Our findings support the hypothesis that msl-1 plays a direct role in increasing the level of X-linked gene transcription in male nuclei.


2000 ◽  
Vol 149 (5) ◽  
pp. 1005-1010 ◽  
Author(s):  
Ye Jin ◽  
Yanming Wang ◽  
Jørgen Johansen ◽  
Kristen M. Johansen

JIL-1 is a novel chromosomal kinase that is upregulated almost twofold on the male X chromosome in Drosophila. Here we demonstrate that JIL-1 colocalizes and physically interacts with male specific lethal (MSL) dosage compensation complex proteins. Furthermore, ectopic expression of the MSL complex directed by MSL2 in females causes a concomitant upregulation of JIL-1 to the female X that is abolished in msl mutants unable to assemble the complex. Thus, these results strongly indicate JIL-1 associates with the MSL complex and further suggests JIL-1 functions in signal transduction pathways regulating chromatin structure.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 249-268 ◽  
Author(s):  
Utpal Bhadra ◽  
Manika Pal-Bhadra ◽  
James A Birchler

Abstract Immunostaining of chromosomes shows that the male-specific lethal (MSL) proteins are associated with all female chromosomes at a low level but are sequestered to the X chromosome in males. Histone-4 Lys-16 acetylation follows a similar pattern in normal males and females, being higher on the X and lower on the autosomes in males than in females. However, the staining pattern of acetylation and the mof gene product, a putative histone acetylase, in msl mutant males returns to a uniform genome-wide distribution as found in females. Gene expression on the autosomes correlates with the level of histone-4 acetylation. With minor exceptions, the expression levels of X-linked genes are maintained with either an increase or decrease of acetylation, suggesting that the MSL complex renders gene activity unresponsive to H4Lys16 acetylation. Evidence was also found for the presence of nucleation sites for association of the MSL proteins with the X chromosome rather than individual gene binding sequences. We suggest that sequestration of the MSL proteins occurs in males to nullify on the autosomes and maintain on the X, an inverse effect produced by negatively acting dosage-dependent regulatory genes as a consequence of the evolution of the X/Y sex chromosomal system.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1167-1181
Author(s):  
Pei-Wen Chiang ◽  
David M Kurnit

Abstract Using a sensitive RT-QPCR assay, we analyzed the regulatory effects of sex and different dosage compensation mutations in Drosophila. To validate the assay, we showed that regulation for several genes indeed varied with the number of functional copies of that gene. We then confirmed that dosage compensation occurred for most genes we examined in male and female flies. Finally, we examined the effects on regulation of several genes in the MSL pathway, presumed to be involved in sex-dependent determination of regulation. Rather than seeing global alterations of either X chromosomal or autosomal genes, regulation of genes on either the X chromosome or the autosomes could be elevated, depressed, or unaltered between sexes in unpredictable ways for the various MSL mutations. Relative dosage for a given gene between the sexes could vary at different developmental times. Autosomal genes often showed deranged regulatory levels, indicating they were in pathways perturbed by X chromosomal changes. As exemplified by the BR-C locus and its dependent Sgs genes, multiple genes in a given pathway could exhibit coordinate regulatory modulation. The variegated pattern shown for expression of both X chromosomal and autosomal loci underscores the complexity of gene expression so that the phenotype of MSL mutations does not reflect only simple perturbations of genes on the X chromosome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Makoto Hayashi ◽  
Shumpei Morita ◽  
Hiroki Miura ◽  
Satoru Kobayashi

AbstractDosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3245-3258 ◽  
Author(s):  
G.J. Bashaw ◽  
B.S. Baker

In Drosophila dosage compensation increases the rate of transcription of the male's X chromosome and depends on four autosomal male-specific lethal genes. We have cloned the msl-2 gene and shown that MSL-2 protein is co-localized with the other three MSL proteins at hundreds of sites along the male polytene X chromosome and that this binding requires the other three MSL proteins. msl-2 encodes a protein with a putative DNA-binding domain: the RING finger. MSL-2 protein is not produced in females and sequences in both the 5′ and 3′ UTRs are important for this sex-specific regulation. Furthermore, msl-2 pre-mRNA is alternatively spliced in a Sex-lethal-dependent fashion in its 5′ UTR.


Sign in / Sign up

Export Citation Format

Share Document