scholarly journals The Conserved Sites for the FK506-binding Proteins in Ryanodine Receptors and Inositol 1,4,5-Trisphosphate Receptors Are Structurally and Functionally Different

2001 ◽  
Vol 276 (50) ◽  
pp. 47715-47724 ◽  
Author(s):  
Geert Bultynck ◽  
Daniela Rossi ◽  
Geert Callewaert ◽  
Ludwig Missiaen ◽  
Vincenzo Sorrentino ◽  
...  

We compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP3R1 and IP3R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well as GST-FKBP12.6 were able to bind ∼30% of the solubilized RyR3. The interaction was completely abolished by FK506, strengthened by the addition of Mg2+, and weakened in the absence of Ca2+but was not affected by the addition of cyclic ADP-ribose. By using proteolytic mapping and site-directed mutagenesis, we pinpointed Val2322, located in the central modulatory domain of the RyR3, as a critical residue for the interaction of RyR3 with FKBPs. Substitution of Val2322for leucine (as in IP3R1) or isoleucine (as in RyR2) decreased the binding efficiency and shifted the selectivity to FKBP12.6; substitution of Val2322for aspartate completely abolished the FKBP interaction. Importantly, the occurrence of the valylprolyl residue as α-helix breaker was an important determinant of FKBP binding. This secondary structure is conserved among the different RyR isoforms but not in the IP3R isoforms. A chimeric RyR3/IP3R1, containing the core of the FKBP12-binding site of IP3R1 in the RyR3 context, retained this secondary structure and was able to interact with FKBPs. In contrast, IP3Rs did not interact with the FKBP isoforms. This indicates that the primary sequence in combination with the local structural environment plays an important role in targeting the FKBPs to the intracellular Ca2+-release channels. Structural differences in the FKBP-binding site of RyRs and IP3Rs may contribute to the occurrence of a stable interaction between RyR isoforms and FKBPs and to the absence of such interaction with IP3Rs.

2007 ◽  
Vol 293 (6) ◽  
pp. H3584-H3592 ◽  
Author(s):  
Nazmi Yaras ◽  
Erkan Tuncay ◽  
Nuhan Purali ◽  
Babur Sahinoglu ◽  
Guy Vassort ◽  
...  

The present study was designed to determine whether the properties of local Ca2+ release and its related regulatory mechanisms might provide insight into the role of sex differences in heart functions of control and streptozotocin-induced diabetic adult rats. Left ventricular developed pressure, the rates of pressure development and decay (±dP/d t), basal intracellular Ca2+ level ([Ca2+]i), and spatiotemporal parameters of [Ca2+]i transients were found to be similar in male and female control rats. However, spatiotemporal parameters of Ca2+ sparks in cardiomyocytes isolated from control females were significantly larger and slower than those in control males. Diabetes reduced left ventricular developed pressure to a lower extent in females than in males, and the diabetes-induced depressions in both +dP/d t and −dP/d t were less in females than in males. Diabetes elicited a smaller reduction in the amplitude of [Ca2+]i transients in females than in males, a smaller reduction in sarcoplasmic reticulum-Ca2+ load, and less increase in basal [Ca2+]i. Similarly, the elementary Ca2+ events and their control proteins were clearly different in both sexes, and these differences were more marked in diabetes. Diabetes-induced depression of the Ca2+ spark amplitude was significantly less in females than in matched males. Levels of cardiac ryanodine receptors (RyR2) and FK506-binding protein 12.6 in control females were significantly higher than those shown in control males. Diabetes induced less RyR2 phosphorylation and FK506-binding protein 12.6 unbinding in females. Moreover, total and free sulfhydryl groups were significantly less reduced, and PKC levels were less increased, in diabetic females than in diabetic males. The present data related to local Ca2+ release and its related proteins describe some of the mechanisms that may underlie sex-related differences accounting for females to have less frequent development of cardiac diseases.


1994 ◽  
Vol 5 (1) ◽  
pp. 97-103 ◽  
Author(s):  
I Bezprozvanny ◽  
S Bezprozvannaya ◽  
B E Ehrlich

Effects of the xanthine drug caffeine on inositol (1,4,5)-trisphosphate (InsP3)-gated calcium (Ca) channels from canine cerebellum were studied using single channels incorporated into planar lipid bilayers. Caffeine, used widely as an agonist of ryanodine receptors, inhibited the activity of InsP3-gated Ca channels in a noncooperative fashion with half-inhibition at 1.64 mM caffeine. The frequency of channel openings was decreased more than threefold after addition of 5 mM caffeine; there was only a small effect on mean open time of the channels, and the single channel conductance was unchanged. Increased InsP3 concentration overcame the inhibitory action of caffeine, but caffeine did not reduce specific [3H]InsP3 binding to the receptor. The inhibitory action of caffeine on InsP3 receptors suggests that the action of caffeine on the intracellular Ca pool must be interpreted with caution when both ryanodine receptors and InsP3 receptors are present in the cell.


2001 ◽  
Vol 354 (2) ◽  
pp. 413-422 ◽  
Author(s):  
Geert BULTYNCK ◽  
Patrick DE SMET ◽  
Daniela ROSSI ◽  
Geert CALLEWAERT ◽  
Ludwig MISSIAEN ◽  
...  

We investigated the interaction of the 12kDa FK506-binding protein (FKBP12) with two ryanodine-receptor isoforms (RyR1 and RyR3) and with two myo-inositol 1,4,5-trisphosphate (IP3) receptor isoforms (IP3R1 and IP3R3). Using glutathione S-transferase (GST)-FKBP12 affinity chromatography, we could efficiently extract RyR1 (42±7% of the solubilized RyR1) from terminal cisternae of skeletal muscle as well as RyR3 (32±4% of the solubilized RyR3) from RyR3-overexpressing HEK-293 cells. These interactions were completely abolished by FK506 (20µM) but were largely unaffected by RyR-channel modulators. In contrast, neither IP3R1 nor IP3R3 from various sources, including rabbit cerebellum, A7r5 smooth-muscle cells and IP3R-overexpressing Sf9 insect cells from Spodoptera frugiperda, were retained on the GST-FKBP12 matrix. Moreover, immunoprecipitation experiments indicated a high-affinity interaction of FKBP12 with RyR1 but not with IP3R1. In order to determine the FKBP12-binding site, we fragmented both RyR1 and IP3R1 by limited proteolysis. We obtained a 45kDa fragment of RyR1 that bound to the GST-FKBP12 matrix, indicating that it retained all requirements for FKBP12 binding. This fragment was identified by its interaction with antibody m34C and must therefore contain its epitope (amino acids 2756–2803). However, no fragment of IP3R1 was retained on the column. These molecular data are in agreement with the lack of correlation between FKBP12 and IP3R1 expression in various cell types. The observation that FKBP12 did not affect IP3-induced Ca2+ release but reduced caffeine-induced Ca2+ release also indicated that mature IP3R1 and IP3R3, in contrast to RyR1 and RyR3, did not display a specific, high-affinity interaction with FKBP12.


2006 ◽  
Vol 290 (6) ◽  
pp. L1146-L1153 ◽  
Author(s):  
Simon Hirota ◽  
Nancy Trimble ◽  
Evi Pertens ◽  
Luke J. Janssen

Intracellular Ca2+ is actively sequestered into the sarcoplasmic reticulum (SR), whereas the release of Ca2+ from the SR can be triggered by activation of the inositol 1,4,5-trisphosphate and ryanodine receptors. Uptake and release of Ca2+ across the SR membrane are electrogenic processes; accumulation of positive or negative charge across the SR membrane could electrostatically hinder the movement of Ca2+ into or out of the SR, respectively. We hypothesized that the movement of intracellular Cl− (Cl[Formula: see text]) across the SR membrane neutralizes the accumulation of charge that accompanies uptake and release of Ca2+. Thus inhibition of SR Cl− fluxes will reduce Ca2+ sequestration and agonist-induced release. The Cl− channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 10−4 M), previously shown to inhibit SR Cl− channels, significantly reduced the magnitude of successive acetylcholine-induced contractions of airway smooth muscle (ASM), suggesting a “run down” of sequestered Ca2+ within the SR. Niflumic acid (10−4 M), a structurally different Cl− channel blocker, had no such effect. Furthermore, NPPB significantly reduced caffeine-induced contraction and increases in intracellular Ca2+ concentration ([Ca2+]i). Depletion of Cl[Formula: see text], accomplished by bathing ASM strips in Cl−-free buffer, significantly reduced the magnitude of successive acetylcholine-induced contractions. In addition, Cl− depletion significantly reduced caffeine-induced increases in [Ca2+]i. Together these data suggest a novel role for Cl[Formula: see text] fluxes in Ca2+ handling in smooth muscle. Because the release of sequestered Ca2+ is the predominate source of Ca2+ for contraction of ASM, targeting Cl[Formula: see text] fluxes may prove useful in the control of ASM hyperresponsiveness associated with asthma.


2005 ◽  
Vol 53 (7) ◽  
pp. 913-916 ◽  
Author(s):  
Andrea J. Clark ◽  
Howard R. Petty

To better understand the mechanism(s) of leukocyte Ca2+ signaling, we have studied the intracellular locations of two Ca2+-mobilizing receptors, the inositol 1,4,5-trisphosphate receptor and ryanodine receptor, by immunofluorescence microscopy. Our results show that localization differs not only between receptor classes within a cell, but among leukocyte types as well. We also illustrate the importance of preserving labile cellular filaments in maintaining cell integrity by fixation with the Safiejko-Mroczka and Bell protocol, because conventional fixation methods distort receptor patterns. We suggest that the observed differences influence intracellular Ca2+ signaling.


2009 ◽  
Vol 422 (2) ◽  
pp. 247-256 ◽  
Author(s):  
Irene Axarli ◽  
Prathusha Dhavala ◽  
Anastassios C. Papageorgiou ◽  
Nikolaos E. Labrou

Cytosolic GSTs (glutathione transferases) are a multifunctional group of enzymes widely distributed in Nature and involved in cellular detoxification processes. The three-dimensional structure of GmGSTU4-4 (Glycine max GST Tau 4-4) complexed with GSH was determined by the molecular replacement method at 2.7 Å (1 Å=0.1 nm) resolution. The bound GSH is located in a region formed by the beginning of α-helices H1, H2 and H3 in the N-terminal domain of the enzyme. Significant differences in the G-site (GSH-binding site) as compared with the structure determined in complex with Nb-GSH [S-(p-nitrobenzyl)-glutathione] were found. These differences were identified in the hydrogen-bonding and electrostatic interaction pattern and, consequently, GSH was found bound in two different conformations. In one subunit, the enzyme forms a complex with the ionized form of GSH, whereas in the other subunit it can form a complex with the non-ionized form. However, only the ionized form of GSH may form a productive and catalytically competent complex. Furthermore, a comparison of the GSH-bound structure with the Nb-GSH-bound structure shows a significant movement of the upper part of α-helix H4 and the C-terminal. This indicates an intrasubunit modulation between the G-site and the H-site (electrophile-binding site), suggesting that the enzyme recognizes the xenobiotic substrates by an induced-fit mechanism. The reorganization of Arg111 and Tyr107 upon xenobiotic substrate binding appears to govern the intrasubunit structural communication between the G- and H-site and the binding of GSH. The structural observations were further verified by steady-state kinetic analysis and site-directed mutagenesis studies.


2004 ◽  
Vol 287 (5) ◽  
pp. H1987-H1993 ◽  
Author(s):  
Ana M. Gómez ◽  
Iris Schuster ◽  
Jérémy Fauconnier ◽  
Jürgen Prestle ◽  
Gerd Hasenfuss ◽  
...  

Ryanodine receptors/Ca2+-release channels (RyR2) from the sarcoplasmic reticulum (SR) provide the Ca2+ required for contraction at each cardiac twitch. RyR2 are regulated by a variety of proteins, including the immunophilin FK506 binding protein (FKBP12.6). FKBP12.6 seems to be important for coupled gating of RyR2 and its deficit and alteration may be involved in heart failure. The role of FKBP12.6 on Ca2+ release has not been analyzed directly, but rather it was inferred from the effects of immunophilins, such us FK506 and rapamycin, which, among other effects, dissociates FKBP12.6 from the RyR2. Here, we investigated directly the effects of FKBP12.6 on local (Ca2+ sparks) and global {intracellular Ca2+ concentration ([Ca2+]i) transients} Ca2+ release in single rat cardiac myocytes. The FKBP12.6 gene was transfected in single myocytes using the adenovirus technique with a reporter gene strategy based on green fluorescent protein (GFP) to check out the success of transfections. Control myocytes were transfected with only GFP (Ad-GFP). Rhod-2 was used as the Ca2+ indicator, and cells were viewed with a confocal microscope. We found that overexpression of FKBP12.6 decreases the occurrence, amplitude, duration, and width of spontaneous Ca2+ sparks. FK506 had diametrically opposed effects. However, overexpression of FKBP12.6 increased the [Ca2+]i transient amplitude and accelerated its decay in field-stimulated cells. The associated cell shortening was increased. SR Ca2+ load, estimated by rapid caffeine application, was increased. In conclusion, FKBP12.6 overexpression decreases spontaneous Ca2+ sparks but increases [Ca2+]i transients, in relation with enhanced SR Ca2+ load, therefore improving excitation-contraction coupling.


2009 ◽  
Vol 66 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Aiko Fujino ◽  
Kei Fukushima ◽  
Naoko Namiki ◽  
Tomomi Kosugi ◽  
Midori Takimoto-Kamimura

Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK2) is a Ser/Thr kinase from the p38 mitogen-activated protein kinase signalling pathway and plays an important role in inflammatory diseases. The crystal structure of the complex of human MK2 (residues 41–364) with the potent MK2 inhibitor TEI-I01800 (pKi= 6.9) was determined at 2.9 Å resolution. The MK2 structure in the MK2–TEI-I01800 complex is composed of two domains, as observed for other Ser/Thr kinases; however, the Gly-rich loop in the N-terminal domain forms an α-helix structure and not a β-sheet. TEI-I01800 binds to the ATP-binding site as well as near the substrate-binding site of MK2. Both TEI-I01800 molecules have a nonplanar conformation that differs from those of other MK2 inhibitors deposited in the Protein Data Bank. The MK2–TEI-I01800 complex structure is the first active MK2 with an α-helical Gly-rich loop and TEI-I01800 regulates the secondary structure of the Gly-rich loop.


2015 ◽  
Vol 309 (12) ◽  
pp. L1455-L1466 ◽  
Author(s):  
Tengyao Song ◽  
Qiongyu Hao ◽  
Yun-Min Zheng ◽  
Qing-Hua Liu ◽  
Yong-Xiao Wang

Transient receptor potential-3 (TRPC3) channels play a predominant role in forming nonselective cation channels (NSCCs) in airway smooth muscle cells (ASMCs) and are significantly increased in their activity and expression in asthmatic ASMCs. To extend these novel findings, we have explored the regulatory mechanisms that control the activity of TRPC3 channels. Our data for the first time reveal that inositol 1,4,5-trisphosphate (IP3), an important endogenous signaling molecule, can significantly enhance the activity of single NSCCs in ASMCs. The analog of diacylglycerol (DAG; another endogenous signaling molecule), 1-oleyl-2-acetyl- sn-glycerol (OAG), 1-stearoyl-2-arachidonoyl- sn-glycerol (SAG), and 1-stearoyl-2-linoleoyl- sn-glycerol (SLG) all augment NSCC activity. The effects of IP3 and OAG are fully abolished by lentiviral short-hairpin (sh)RNA-mediated TRPC3 channel knockdown (KD). The stimulatory effect of IP3 is eliminated by heparin, an IP3 receptor (IP3R) antagonist that blocks the IP3-binding site, but not by xestospongin C, the IP3R antagonist that has no effect on the IP3-binding site. Lentiviral shRNA-mediated KD of IP3R1, IP3R2, or IP3R3 does not alter the excitatory effect of IP3. TRPC3 channel KD greatly inhibits IP3-induced increase in intracellular Ca2+ concentration. IP3R1 KD produces a similar inhibitory effect. TRPC3 channel and IP3R1 KD both diminish the muscarinic receptor agonist methacholine-evoked Ca2+ responses. Taking these findings together, we conclude that IP3, the important intracellular second messenger, may activate TRPC3 channels to cause extracellular Ca2+ influx, in addition to opening IP3Rs to induce intracellular Ca2+ release. This novel extracellular Ca2+ entry route may play a significant role in mediating IP3-mediated numerous cellular responses in ASMCs and other cells.


Sign in / Sign up

Export Citation Format

Share Document