scholarly journals Neutralization ofClostridium difficileToxin A with Single-domain Antibodies Targeting the Cell Receptor Binding Domain

2011 ◽  
Vol 286 (11) ◽  
pp. 8961-8976 ◽  
Author(s):  
Greg Hussack ◽  
Mehdi Arbabi-Ghahroudi ◽  
Henk van Faassen ◽  
J. Glenn Songer ◽  
Kenneth K.-S. Ng ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojing Chi ◽  
Xiuying Liu ◽  
Conghui Wang ◽  
Xinhui Zhang ◽  
Xiang Li ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads worldwide and leads to an unprecedented medical burden and lives lost. Neutralizing antibodies provide efficient blockade for viral infection and are a promising category of biological therapies. Here, using SARS-CoV-2 spike receptor-binding domain (RBD) as a bait, we generate a panel of humanized single domain antibodies (sdAbs) from a synthetic library. These sdAbs reveal binding kinetics with the equilibrium dissociation constant (KD) of 0.99–35.5 nM. The monomeric sdAbs show half maximal neutralization concentration (EC50) of 0.0009–0.07 µg/mL and 0.13–0.51 µg/mL against SARS-CoV-2 pseudotypes, and authentic SARS-CoV-2, respectively. Competitive ligand-binding experiments suggest that the sdAbs either completely block or significantly inhibit the association between SARS-CoV-2 RBD and viral entry receptor ACE2. Fusion of the human IgG1 Fc to sdAbs improve their neutralization activity by up to ten times. These results support neutralizing sdAbs as a potential alternative for antiviral therapies.


Author(s):  
George Tetz ◽  
Victor Tetz

Currently, the world is struggling with the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prion-like domains are critical for virulence and the development of therapeutic targets; however, the prion-like domains in the SARS-CoV-2 proteome have not been analyzed. In this in silico study, using the PLAAC algorithm, we identified the presence of prion-like domains in SARS-CoV-2 spike protein. Compared with other viruses, a striking difference was observed in the distribution of prion-like domains in the spike, since SARS-CoV-2 was the only coronavirus with a prion-like domain found in the receptor-binding domain of the S1 region of the spike protein. The presence and unique distribution of prion-like domains in the SARS-CoV-2 receptor-binding domains of spike proteins is particularly interesting, since although SARS-CoV-2 and SARS-CoV S share the same host cell receptor, angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 demonstrates a 10- to 20-fold higher affinity for ACE2. Finally, we identified prion-like domains in the α1 helix of the ACE2 receptor that interacts with the viral receptor-binding domain of SARS-CoV-2. Taken together, the present findings indicate that the identified PrDs in the SARS-CoV-2 receptor-binding domain (RBD) and ACE2 region that interacts with RBD have important functional roles in viral adhesion and entry.


2021 ◽  
Author(s):  
Cecylia S. Lupala ◽  
Vikash Kumar ◽  
Xiao-dong Su ◽  
Chun Wu ◽  
Haiguang Liu

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causing agent of the COVID-19 pandemic, has spread globally. Angiotensin-converting enzyme 2 (ACE2) has been identified as the host cell receptor that binds to receptor-binding domain (RBD) of the SARS-COV-2 spike protein and mediates cell entry. Because the ACE2 proteins are widely available in mammals, it is important to investigate the interactions between the RBD and the ACE2 of other mammals. Here we analyzed the sequences of ACE2 proteins from 16 mammals and predicted the structures of ACE2-RBD complexes. Analyses on sequence, structure, and dynamics synergistically provide valuable insights into the interactions between ACE2 and RBD. The comparison results suggest that the ACE2 of bovine, cat and panda form strong binding with RBD, while in the cases of rat, least horseshoe bat, horse, pig, mouse and civet, the ACE2 proteins interact weakly with RBD.


2021 ◽  
Author(s):  
Angelo Spinello ◽  
Andrea Saltalamacchia ◽  
Jure Borišek ◽  
Alessandra Magistrato

ABSTRACTThe rapid and relentless emergence of novel highly transmissible SARS-CoV-2 variants, possibly decreasing vaccine efficacy, currently represents a formidable medical and societal challenge. These variants frequently hold mutations on the Spike protein’s Receptor-Binding Domain (RBD), which, binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor, mediates viral entry into the host cells.Here, all-atom Molecular Dynamics simulations and Dynamical Network Theory of the wild-type and mutant RBD/ACE2 adducts disclose that while the N501Y mutation (UK variant) enhances the Spike’s binding affinity towards ACE2, the N501Y, E484K and K417N mutations (South African variant) aptly adapt to increase SARS-CoV-2 propagation via a two-pronged strategy: (i) effectively grasping ACE2 through an allosteric signaling between pivotal RBD structural elements; and (ii) impairing the binding of antibodies elicited by infected/vaccinated patients. This information, unlocking the molecular terms and evolutionary strategies underlying the increased virulence of emerging SARS-CoV-2 variants, set the basis for developing the next-generation anti-COVID-19 therapeutics.TOC GRAPHICS


2021 ◽  
Vol 67 (3) ◽  
pp. 244-250
Author(s):  
R.Sh. Bibilashvili ◽  
M.V. Sidorova ◽  
U.S. Dudkina ◽  
M.E. Palkeeva ◽  
A.S. Molokoedov ◽  
...  

Computer simulation has been used to identify peptides that mimic the natural target of the SARS-CoV-2 coronavirus spike (S) protein, the angiotensin converting enzyme type 2 (ACE2) cell receptor. Based on the structure of the complex of the protein S receptor-binding domain (RBD) and ACE2, the design of chimeric molecules consisting of two 22-23-mer peptides linked to each other by disulfide bonds was carried out. The chimeric molecule X1 was a disulfide dimer, in which edge cysteine residues in the precursor molecules h1 and h2 were connected by the S-S bond. In the chimeric molecule X2, the disulfide bond was located in the middle of the molecule of each of the precursor peptides. The precursors h1 and h2 modelled amino acid sequences of α1- and α2-helices of the extracellular peptidase domain of ACE2, respectively, keeping intact most of the amino acid residues involved in the interaction with RBD. The aim of the work was to evaluate the binding efficiency of chimeric molecules and their RBD-peptides (particularly in dependence of the middle and edge methods of fixing the initial peptides h1 and h2). The proposed polypeptides and chimeric molecules were synthesized by chemical methods, purified (to 95-97% purity), and characterized by HPLC and MALDI-TOF mass spectrometry. The binding of the peptides to the SARS-CoV-2 RBD was evaluated by microthermophoresis with recombinant domains corresponding in sequence to the original Chinese (GenBank ID NC_045512.2) and the British (B. 1.1.7, GISAID EPI_ISL_683466) variants. Binding to the original RBD of the Chinese variant was detected in three synthesized peptides: linear h2 and both chimeric variants. Chimeric peptides were also bound to the RBD of the British variant with micromolar constants. The antiviral activity of the proposed peptides in Vero cell culture was also evaluated.


Author(s):  
Mary E. Cook ◽  
Kristen M. Varney ◽  
Raquel Godoy-Ruiz ◽  
David J. Weber

Abstract Clostridioides difficile is a bacterial pathogen responsible for the majority of nosocomial infections in the developed world. C. difficile infection (CDI) is difficult to treat in many cases because hypervirulent strains have evolved that contain a third toxin, termed the C. difficile toxin (CDT), in addition to the two enterotoxins TcdA and TcdB. CDT is a binary toxin comprised of an enzymatic, ADP-ribosyltransferase (ART) toxin component, CDTa, and a pore-forming or delivery subunit, CDTb. In the absence of CDTa, CDTb assembles into two distinct di-heptameric states, a symmetric and an asymmetric form with both states having two surface-accessible host cell receptor-binding domains, termed RBD1 and RBD2. RBD1 has a unique amino acid sequence, when aligned to other well-studied binary toxins (i.e., anthrax), and it contains a novel Ca2+-binding site important for CDTb stability. The other receptor binding domain, RBD2, is critically important for CDT toxicity, and a domain such as this is missing altogether in other binary toxins and shows further that CDT is unique when compared to other binary toxins. In this study, the 1H, 13C, and 15N backbone and sidechain resonances of the 120 amino acid RBD2 domain of CDTb (residues 757–876) were assigned sequence-specifically and provide a framework for future NMR-based drug discovery studies directed towards targeting the most virulent strains of CDI.


2000 ◽  
Vol 68 (3) ◽  
pp. 1094-1101 ◽  
Author(s):  
Harald Genth ◽  
Jörg Selzer ◽  
Christian Busch ◽  
Jürgen Dumbach ◽  
Fred Hofmann ◽  
...  

ABSTRACT The family of the large clostridial cytotoxins, encompassingClostridium difficile toxins A and B as well as the lethal and hemorrhagic toxins from Clostridium sordellii, monoglucosylate the Rho GTPases by transferring a glucose moiety from the cosubstrate UDP-glucose. Here we present a new detoxification procedure to block the enzyme activity by treatment with the reactive UDP-2′,3′-dialdehyde to result in alkylation of toxin A and B. Alkylation is likely to occur in the catalytic domain, because the native cosubstrate UDP-glucose completely protected the toxins from inactivation and the alkylated toxin competes with the native toxin at the cell receptor. Alkylated toxins are good antigens resulting in antibodies recognizing only the C-terminally located receptor binding domain, whereas formaldehyde treatment resulted in antibodies recognizing both the receptor binding domain and the catalytic domain, indicating that the catalytic domain is concealed under native conditions. Antibodies against the native catalytic domain (amino acids 1 through 546) and those holotoxin antibodies recognizing the catalytic domain inhibited enzyme activity. However, only antibodies against the receptor binding domain protected intact cells from the cytotoxic activity of toxin B, whereas antibodies against the catalytic domain were protective only when inside the cell.


Sign in / Sign up

Export Citation Format

Share Document