scholarly journals Ibulocydine Is a Novel Prodrug Cdk Inhibitor That Effectively Induces Apoptosis in Hepatocellular Carcinoma Cells

2011 ◽  
Vol 286 (22) ◽  
pp. 19662-19671 ◽  
Author(s):  
Seung-Ju Cho ◽  
Young-Jong Kim ◽  
Young-Joon Surh ◽  
B. Moon Kim ◽  
Seung-Ki Lee

Hepatocellular carcinoma (HCC) is frequently associated with abnormalities in cell cycle regulation, leading to increased activity of cyclin-dependent kinases (Cdks) due to the loss, or low expression of, Cdk inhibitors. In this study, we showed that ibulocydine (an isobutyrate prodrug of the specific Cdk inhibitor, BMK-Y101) is a candidate anti-cancer drug for HCC. Ibulocydine has high activity against Cdk7/cyclin H/Mat1 and Cdk9/cyclin T. Ibulocydine inhibited the growth of HCC cells more effectively than other Cdk inhibitors, including olomoucine and roscovitine, whereas ibulocydine as well as the other Cdk inhibitors and BMK-Y101 minimally influenced the growth of normal hepatocyte cells. Ibulocydine induced apoptosis in HCC cells, most likely by inhibiting Cdk7 and Cdk9. In vitro treatment of HCC cells with ibulocydine rapidly blocked phosphorylation of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II, a process mediated by Cdk7/9. Anti-apoptotic gene products such as Mcl-1, survivin, and X-linked IAP (XIAP) are crucial for the survival of many cell types, including HCC. Following the inhibition of RNA polymerase II phosphorylation, ibulocydine caused rapid down-regulation of Mcl-1, survivin, and XIAP, thus inducing apoptosis. Furthermore, ibulocydine effectively induced apoptosis in HCC xenografts with no toxic side effects. These results suggest that ibulocydine is a strong candidate anti-cancer drug for the treatment of HCC.

Author(s):  
Xiao-Feng Zhu ◽  
Xiao-Jin Li ◽  
Zhong-Lian Cao ◽  
Xiu-Jie Liu ◽  
Ping Yang ◽  
...  

Background: A Chinese folk medicine plant Pleurospermum lindleyanum possesses pharmacological activities of heat-clearing, detoxifying and preventing from hepatopathy, coronary heart disease, hypertension, and high altitude sickness. We isolated and characterized its constituents to investigate its synergistic effects against human hepatoma SMMC-7721 cells. Objective: The aim of this study was to explore the synergistic anti-cancer activities of isolates from P. lindleyanum with 5-FU on hepatoma SMMC-7721 cells in vitro and their primary mechanisms. Methods: Sequential chromatographic techniques were conducted for the isolation studies. The isolates structures were established by spectroscopic analysis as well as X-ray crystallographic diffraction. Growth inhibition was detected by MTT assay. The isobologram method was used to assess the effect of drug combinations. Flow cytometry and western blot were used to examine apoptosis and protein expression. Results: A new coumarin (16), along with sixteen known compounds, were isolated from the whole plant of P. lindleyanum and their structures were elucidated by spectroscopic methods. Four coumarins (2, 3, 5, and 16), two flavonoids (8 and 9) and three phytosterols and triterpenes (12-14) were found to synergistically enhance the inhibitory effect of 5-FU against SMMC-7721 cells. Among them, compounds 3 and 16 exhibited the best synergistic effects with IC50 of 5-FU reduced by 16-fold and 22-fold possessing the minimum Combination Index (CI) 0.34 and 0.27. The mechanism of action of combinations might be through synergistic arresting for the cell cycle at G1 phases and the induction of apoptosis. Moreover, western blotting and molecular docking revealed that compounds 3 or 5 might promote 5-FU-induced apoptosis by regulating the expression of Caspase 9 and PARP. Conclusion: Constituents from P. lindleyanum may improve the treatment effectiveness of 5-FU against hepatocellular carcinoma cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanshan Wang ◽  
Rilu Feng ◽  
Ying Shi ◽  
Dexi Chen ◽  
Honglei Weng ◽  
...  

AbstractRetinoic acid and retinoid acid receptor (RA-RAR) signaling exhibits suppressive functions in the progression of hepatocellular carcinoma (HCC) through multiple mechanisms. However, whether RA-RAR signaling induces autophagy that contributes its anti-tumor activity in HCC remains elusive. In the current study, the effects of RA-RAR pathway on autophagy were investigated in two HCC cell lines: alpha-fetoprotein (AFP) positive PLC/PRF/5 and AFP negative HLE cells. Cell autophagy was analyzed with western blot for detection of LC3 conversion and p62/SQSTM1 degradation while autophagy flux was assayed using the mRFP-GFP-LC3 reporter. Cell apoptosis and viability were analyzed by caspase-3 activity, TdT-mediated dUTP nick end labeling (TUNEL) assay, and Cell Counting Kit (CCK)-8, respectively. Chromatin immunoprecipitation (ChIP) was employed to detect the binding of RAR onto the promoter of autophagy-relevant 7 (ATG7), and co-immunoprecipitation (CoIP) was used to analyze the interaction of AFP and RAR. The results showed that ATRA dosage and time-dependently induced high levels of cell autophagy in both the PLC/PRF/5 and HLE cells, which was accompanied with up-regulation of ATG7. ChIP assay showed that RAR was able to bind to its responsive elements on ATG7 promoter. Impairment of ATG7 induction or blockade of autophagy with chloroquine aggravated ATRA induced apoptosis of HCC cells. Furthermore, intracellular AFP was able to complex with RAR in PLC/PRF/5 cells. Knockdown of AFP in PLC/PRF/5 cells augmented the up-regulation of ATG7 by ATRA while overexpression of AFP in HLE cells attenuated ATRA induced ATG7 expression and autophagy. Thus, ATRA induced ATG7 and autophagy participated in its cytotoxicity on HCC cells and AFP interfere with the induction of ATG7 and autophagy through forming complex with RAR.


2020 ◽  
Vol 21 (21) ◽  
pp. 8303
Author(s):  
Min Hee Yang ◽  
Seung Ho Baek ◽  
Jae-Young Um ◽  
Kwang Seok Ahn

Ginkgolide C (GGC) derived from Ginkgo biloba, has been reported to exhibit various biological functions. However, the anti-neoplastic effect of GGC and its mechanisms in liver cancer have not been studied previously. Hepatocyte growth factor (HGF)/c-mesenchymal–epithelial transition receptor (c-Met) pathway can regulate tumor growth and metastasis in hepatocellular carcinoma (HCC) cells. This study aimed to evaluate the anti-neoplastic effect of GGC against HCC cells and we observed that GGC inhibited HGF-induced c-Met and c-Met downstream oncogenic pathways, such as PI3K/Akt/mTOR and MEK/ERK. In addition, GGC also suppressed the proliferation of expression of diverse tumorigenic proteins (Bcl-2, Bcl-xL, Survivin, IAP-1, IAP-2, Cyclin D1, and COX-2) and induced apoptosis. Interestingly, the silencing of c-Met by small interfering RNA (siRNA) mitigated c-Met expression and enhanced GGC-induced apoptosis. Moreover, it was noted that GGC also significantly reduced the invasion and migration of HCC cells. Overall, the data clearly demonstrate that GGC exerts its anti-neoplastic activity through modulating c-Met phosphorylation and may be used as an effective therapy against HCC.


2018 ◽  
Vol 50 (1) ◽  
pp. e419-e419 ◽  
Author(s):  
Hadassa Hirschfield ◽  
C Billie Bian ◽  
Takaaki Higashi ◽  
Shigeki Nakagawa ◽  
Tizita Z Zeleke ◽  
...  

2020 ◽  
Vol 48 (11) ◽  
pp. 6068-6080 ◽  
Author(s):  
Nicolás Nieto Moreno ◽  
Florencia Villafañez ◽  
Luciana E Giono ◽  
Carmen Cuenca ◽  
Gastón Soria ◽  
...  

Abstract We have previously found that UV-induced DNA damage causes hyperphosphorylation of the carboxy terminal domain (CTD) of RNA polymerase II (RNAPII), inhibition of transcriptional elongation and changes in alternative splicing (AS) due to kinetic coupling between transcription and splicing. In an unbiased search for protein kinases involved in the AS response to DNA damage, we have identified glycogen synthase kinase 3 (GSK-3) as an unforeseen participant. Unlike Cdk9 inhibition, GSK-3 inhibition only prevents CTD hyperphosphorylation triggered by UV but not basal phosphorylation. This effect is not due to differential degradation of the phospho-CTD isoforms and can be reproduced, at the AS level, by overexpression of a kinase-dead GSK-3 dominant negative mutant. GSK-3 inhibition abrogates both the reduction in RNAPII elongation and changes in AS elicited by UV. We show that GSK-3 phosphorylates the CTD in vitro, but preferentially when the substrate is previously phosphorylated, consistently with the requirement of a priming phosphorylation reported for GSK-3 efficacy. In line with a role for GSK-3 in the response to DNA damage, GSK-3 inhibition prevents UV-induced apoptosis. In summary, we uncover a novel role for a widely studied kinase in key steps of eukaryotic transcription and pre-mRNA processing.


2010 ◽  
Vol 30 (21) ◽  
pp. 5180-5193 ◽  
Author(s):  
Alicia García ◽  
Emanuel Rosonina ◽  
James L. Manley ◽  
Olga Calvo

ABSTRACT The transcriptional coactivator Sub1 has been implicated in several aspects of mRNA metabolism in yeast, such as activation of transcription, termination, and 3′-end formation. Here, we present evidence that Sub1 plays a significant role in controlling phosphorylation of the RNA polymerase II large subunit C-terminal domain (CTD). We show that SUB1 genetically interacts with the genes encoding all four known CTD kinases, SRB10, KIN28, BUR1, and CTK1, suggesting that Sub1 acts to influence CTD phosphorylation at more than one step of the transcription cycle. To address this directly, we first used in vitro kinase assays, and we show that, on the one hand, SUB1 deletion increased CTD phosphorylation by Kin28, Bur1, and Ctk1 but, on the other, it decreased CTD phosphorylation by Srb10. Second, chromatin immunoprecipitation assays revealed that SUB1 deletion decreased Srb10 chromatin association on the inducible GAL1 gene but increased Kin28 and Ctk1 chromatin association on actively transcribed genes. Taken together, our data point to multiple roles for Sub1 in the regulation of CTD phosphorylation throughout the transcription cycle.


Sign in / Sign up

Export Citation Format

Share Document