scholarly journals Translation Mediated by the Internal Ribosome Entry Site of thecat-1mRNA Is Regulated by Glucose Availability in a PERK Kinase-dependent Manner

2002 ◽  
Vol 277 (14) ◽  
pp. 11780-11787 ◽  
Author(s):  
James Fernandez ◽  
Barry Bode ◽  
Antonis Koromilas ◽  
J. Alan Diehl ◽  
Irene Krukovets ◽  
...  
2008 ◽  
Vol 89 (4) ◽  
pp. 994-999 ◽  
Author(s):  
Ming Xiao ◽  
Yan Bai ◽  
Hui Xu ◽  
Xiaolu Geng ◽  
Jun Chen ◽  
...  

A full-length NS3 (NS3F) and a truncated NS3 protein (NS3H) with an RNA helicase domain possess RNA helicase activity. Using an in vitro system with a monocistronic reporter RNA or DNA, containing the CSFV 5′-UTR, we observed that both NS3F and NS3H enhanced internal ribosome entry site (IRES)-mediated and cellular translation in a dose-dependent manner, but NS3 protease (NS3P) that lacks a helicase domain did not. NS3F was stronger than NS3H in promoting both translations. These results showed that viral RNA helicase could promote viral and cellular translation, and higher RNA helicase activity might be more efficient. The NS5B protein, the viral replicase, did not significantly affect the IRES-directed or cellular translation alone. NS5B significantly enhanced the stimulative effect of NS3F on both IRES-mediated and cellular translation, but did not affect that of NS3H or NS3P. This suggests that NS5B and NS3 interact via the protease domain during the enhancement of translation.


2005 ◽  
Vol 280 (16) ◽  
pp. 15601-15611 ◽  
Author(s):  
Anton A. Komar ◽  
Stephane R. Gross ◽  
Diane Barth-Baus ◽  
Ryan Strachan ◽  
Jack O. Hensold ◽  
...  

Eukaryotic initiation factor 2A (eIF2A) has been shown to direct binding of the initiator methionyl-tRNA (Met-tRNAi) to 40 S ribosomal subunits in a codon-dependent manner, in contrast to eIF2, which requires GTP but not the AUG codon to bind initiator tRNA to 40 S subunits. We show here that yeast eIF2A genetically interacts with initiation factor eIF4E, suggesting that both proteins function in the same pathway. The doubleeIF2A/eIF4E-tsmutant strain displays a severe slow growth phenotype, which correlated with the accumulation of 85% of the double mutant cells arrested at the G2/M border. These cells also exhibited a disorganized actin cytoskeleton and elevated actin levels, suggesting that eIF2A might be involved in controlling the expression of genes involved in morphogenic processes. Further insights into eIF2A function were gained from the studies of eIF2A distribution in ribosomal fractions obtained from either aneIF5BΔ (fun12Δ) strain or aeIF3b-ts(prt1-1) strain. It was found that the binding of eIF2A to 40 and 80 S ribosomes was not impaired in either strain. We also found that eIF2A functions as a suppressor of Ure2p internal ribosome entry site-mediated translation in yeast cells. The regulation of expression from theURE2internal ribosome entry site appears to be through the levels of eIF2A protein, which has been found to be inherently unstable with a half-life of ∼17 min. It was hypothesized that this instability allows for translational control through the level of eIF2A protein in yeast cells.


2005 ◽  
Vol 86 (11) ◽  
pp. 3047-3053 ◽  
Author(s):  
Sidhartha Hazari ◽  
Asha Patil ◽  
Virendra Joshi ◽  
Deborah E. Sullivan ◽  
Cesar D. Fermin ◽  
...  

Certain genotypes of hepatitis C virus (HCV) respond less often than others to treatment with interferon (IFN). The mechanisms for this differential response are not known. In this report antiviral effects of IFN-α2b on translation were examined in a hepatic cell line using chimeric clones of internal ribosome entry site (IRES) sequences from six different HCV genotypes and the green fluorescence protein (GFP) gene. As a control, IFN action at the level of the IRES was examined in the presence of different cytokines. It was determined that IFN-α2b specifically inhibited the translation of GFP mediated by IRES sequences from six major HCV genotypes in a concentration-dependent manner. Other cytokines including tumour necrosis factor alpha, transforming growth factor beta 1, interleukin 1 and interleukin 6 have no inhibitory effect. The inhibition of translation in these experiments was not due to extensive intracellular degradation of IRES-GFP mRNA. These results suggest that the antiviral action of IFN-α2b blocks IRES-mediated translation and this effect is the same among HCVs of other genotypes.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 920 ◽  
Author(s):  
Qingyun Zheng ◽  
Xueyan Zhang ◽  
Hua Yang ◽  
Jinyan Xie ◽  
Yilin Xie ◽  
...  

Bicistronic transgene expression mediated by internal ribosome entry site (IRES) elements has been widely used. It co-expresses heterologous transgene products from a message RNA driven by a single promoter. Hematologic gene delivery is a promising treatment for both inherited and acquired diseases. A combined strategy was recently documented for potential genome editing in hematopoietic cells. A transduction efficiency exceeding ~90% can be achieved by capsid-optimized recombinant adeno-associated virus serotype 6 (rAAV6) vectors. In this study, to deliver an encephalomyocarditis virus (EMCV) IRES-containing rAAV6 genome into hematopoietic cells, we observed that EMCV IRES almost completely shut down the transgene expression during the process of mRNA–protein transition. In addition, position-dependent behavior was observed, in which only the EMCV IRES element located between a promoter and the transgenes had an inhibitory effect. Although further studies are warranted to evaluate the involvement of cellular translation machinery, our results propose the use of specific IRES elements or an alternative strategy, such as the 2A system, to achieve bicistronic transgene expression in hematopoietic cells.


2006 ◽  
Vol 87 (11) ◽  
pp. 3251-3262 ◽  
Author(s):  
Paul R. MacCallum ◽  
Samantha C. Jack ◽  
Philip A. Egan ◽  
Benjamin T. McDermott ◽  
Richard M. Elliott ◽  
...  

Chronic hepatitis C is often associated with oxidative stress. Hepatitis C virus (HCV) utilizes an internal ribosome entry site (IRES) element for translation, in contrast to cap-dependent translation of the majority of cellular proteins. To understand how virus translation is modulated under oxidative stress, HCV IRES-mediated translation was compared with cap-dependent translation using a bicistronic reporter construct and hydrogen peroxide (H2O2) as a stress inducer. In H2O2-sensitive HeLa cells, H2O2 repressed translation in a time- and dose-dependent manner, concomitant with the kinetics of eIF2α phosphorylation. A phosphomimetic of eIF2α, which mimics the structure of the phosphorylated eIF2α, was sufficient to repress translation in the absence of H2O2. In H2O2-resistant HepG2 cells, H2O2 activated both HCV IRES-mediated and cap-dependent translation, associated with an increased level of phospho-eIF2α. It was postulated that H2O2 might stimulate translation in HepG2 cells via an eIF2α-independent mechanism, whereas the simultaneous phosphorylation of eIF2α repressed part of the translational activities. Indeed, the translational repression was released in the presence of a non-phosphorylatable mutant, eIF2α-SA, resulting in further enhancement of both translational activities after exposure to H2O2. In HuH7 cells, which exhibited an intermediate level of sensitivity towards H2O2, both HCV IRES-mediated and cap-dependent translational activities were upregulated after treatment with various doses of H2O2, but the highest level of induction was achieved with a low level of H2O2, which may represent the physiological level of H2O2. At this level, the HCV IRES-mediated translation was preferentially upregulated compared with cap-dependent translation.


2008 ◽  
Vol 82 (19) ◽  
pp. 9389-9399 ◽  
Author(s):  
Jennifer M. Bonderoff ◽  
Jennifer L. LaRey ◽  
Richard E. Lloyd

ABSTRACT The two enteroviral proteinases, 2A proteinase (2Apro) and 3C proteinase (3Cpro), induce host cell translation shutoff in enterovirus-infected cells by cleaving canonical translation initiation factors. Cleavage of poly(A)-binding protein (PABP) by 3Cpro has been shown to be a necessary component for host translation shutoff. Here we show that 3Cpro inhibits cap-independent translation mediated by the poliovirus internal ribosome entry site (IRES) in a dose-dependent manner in HeLa translation extracts displaying cap-poly(A) synergy. This effect is independent of the stimulatory effect of 2Apro on IRES translation, and 3Cpro-induced translation inhibition can be partially rescued by addition of recombinant PABP in vitro. 3Cpro inhibits IRES translation on transcripts containing or lacking poly(A) tails, suggesting that cleavage of PABP and IRES trans-activating factors polypyrimidine tract-binding protein and poly r(C)-binding protein 2 may also be important for inhibition. Expression of 3Cpro cleavage-resistant PABP in cells increased translation of nonreplicating viral minigenome reporter RNAs during infection and also delayed and reduced virus protein synthesis from replicating RNA. Further, expression of cleavage-resistant PABP in cells reduced the accumulation of viral RNA and the output of infectious virus. These results suggest that cleavage of PABP contributes to viral translation shutoff that is required for the switch from translation to RNA replication.


2009 ◽  
Vol 90 (12) ◽  
pp. 2923-2928 ◽  
Author(s):  
Ming Xiao ◽  
Yujing Wang ◽  
Zailing Zhu ◽  
Jialin Yu ◽  
Lingzhu Wan ◽  
...  

An internal ribosome entry site (IRES) present in the 5′ untranslated region (UTR) promotes translation of classical swine fever virus (CSFV) genomes. Using an in vitro system with monocistronic reporter RNA containing the CSFV 5′UTR, this study found that CSFV NS5A decreased CSFV IRES-mediated translation in a dose-dependent manner. Deletion analysis showed that the region responsible for repressing CSFV IRES activity might cover aa  390–414, located in the C-terminal half of CSFV NS5A. Triple and single alanine-scanning mutagenesis revealed that the inhibitory effect on CSFV IRES-directed translation mapped to the K399, T401, E406 and L413 residues of NS5A. These important amino acids were also found to be present in the NS5A proteins of bovine viral diarrhea virus (BVDV)-1, BVDV-2, border disease virus and hepatitis C virus, indicating that NS5A may play an important role in the switch from translation to replication in these viruses.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 493
Author(s):  
Xinying Wang ◽  
Marli Vlok ◽  
Stephane Flibotte ◽  
Eric Jan

The dicistrovirus intergenic region internal ribosome entry site (IGR IRES) uses an unprecedented, streamlined mechanism whereby the IRES adopts a triple-pseudoknot (PK) structure to directly bind to the conserved core of the ribosome and drive translation from a non-AUG codon. The origin of this IRES mechanism is not known. Previously, a partial fragment of a divergent dicistrovirus RNA genome, named ancient Northwest territories cripavirus (aNCV), was extracted from 700-year-old caribou feces trapped in a subarctic ice patch. The aNCV IGR sequence adopts a secondary structure similar to contemporary IGR IRES structures, however, there are subtle differences including 105 nucleotides upstream of the IRES of unknown function. Using filter binding assays, we showed that the aNCV IRES could bind to purified ribosomes, and toeprinting analysis pinpointed the start site at a GCU alanine codon adjacent to PKI. Using a bicistronic reporter RNA, the aNCV IGR can direct translation in vitro in a PKI-dependent manner. Lastly, a chimeric infectious clone swapping in the aNCV IRES supported translation and virus infection. The characterization and resurrection of a functional IGR IRES from a divergent 700-year-old virus provides a historical framework for the importance of this viral translational mechanism.


2007 ◽  
Vol 88 (11) ◽  
pp. 3053-3062 ◽  
Author(s):  
Olga Fernández-Miragall ◽  
Encarnación Martínez-Salas

Internal ribosome entry site (IRES) elements were described in picornaviruses as an essential region of the viral RNA. Understanding of IRES function requires a detailed knowledge of each step involved in the internal initiation process, from RNA folding and IRES–protein interaction to ribosome recruitment. Thus, deciphering IRES accessibility to external agents due to RNA structural features, as well as RNA–protein protection within living cells, is of primary importance. In this study, two chemical reagents, dimethylsulfate (DMS) and aminomethylpsoralen, have been used to footprint the entire IRES of foot-and-mouth disease virus (FMDV) in living cells; these reagents enter the cell membrane and interact with nucleic acids in a structure-dependent manner. For FMDV, as in other picornaviruses, viral infection is dependent on the correct function of the IRES; therefore, the IRES region itself constitutes a useful target of antiviral drugs. Here, the in vivo footprint of a picornavirus IRES element in the context of a biologically active mRNA is shown for the first time. The accessibility of unpaired adenosine and cytosine nucleotides in the entire FMDV IRES was first obtained in vitro by DMS probing; subsequently, this information was used to interpret the footprint data obtained in vivo for the mRNA encompassing the IRES element in the intercistronic space. The results of DMS accessibility and UV–psoralen cross-linking studies in the competitive cellular environment provided evidence for differences in RNA structure from data obtained in vitro, and provided essential information to identify appropriate targets within the FMDV IRES aimed at combating this important pathogen.


Sign in / Sign up

Export Citation Format

Share Document