scholarly journals Loop Diuretic and Ion-binding Residues Revealed by Scanning Mutagenesis of Transmembrane Helix 3 (TM3) of Na-K-Cl Cotransporter (NKCC1)

2012 ◽  
Vol 287 (21) ◽  
pp. 17308-17317 ◽  
Author(s):  
Suma Somasekharan ◽  
Jessica Tanis ◽  
Biff Forbush
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yasuhiro Onoue ◽  
Masayo Iwaki ◽  
Ai Shinobu ◽  
Yasutaka Nishihara ◽  
Hiroto Iwatsuki ◽  
...  

1992 ◽  
Vol 32 (2) ◽  
pp. 56-59
Author(s):  
Yoshihiro FUKUSHIMA ◽  
Junji TAKADA

2004 ◽  
Vol 123 (4) ◽  
pp. 441-454 ◽  
Author(s):  
Anke Dahlmann ◽  
Min Li ◽  
ZhongHua Gao ◽  
Deirdre McGarrigle ◽  
Henry Sackin ◽  
...  

ROMK channels are regulated by internal pH (pHi) and extracellular K+ (K+o). The mechanisms underlying this regulation were studied in these channels after expression in Xenopus oocytes. Replacement of the COOH-terminal portion of ROMK2 (Kir1.1b) with the corresponding region of the pH-insensitive channel IRK1 (Kir 2.1) produced a chimeric channel (termed C13) with enhanced sensitivity to inhibition by intracellular H+, increasing the apparent pKa for inhibition by ∼0.9 pH units. Three amino acid substitutions at the COOH-terminal end of the second transmembrane helix (I159V, L160M, and I163M) accounted for these effects. These substitutions also made the channels more sensitive to reduction in K+o, consistent with coupling between the responses to pHi and K+o. The ion selectivity sequence of the activation of the channel by cations was K+ ≅ Rb+ > NH4+ >> Na+, similar to that for ion permeability, suggesting an interaction with the selectivity filter. We tested a model of coupling in which a pH-sensitive gate can close the pore from the inside, preventing access of K+ from the cytoplasm and increasing sensitivity of the selectivity filter to removal of K+o. We mimicked closure of this gate using positive membrane potentials to elicit block by intracellular cations. With K+o between 10 and 110 mM, this resulted in a slow, reversible decrease in conductance. However, additional channel constructs, in which inward rectification was maintained but the pH sensor was abolished, failed to respond to voltage under the same conditions. This indicates that blocking access of intracellular K+ to the selectivity filter cannot account for coupling. The C13 chimera was 10 times more sensitive to extracellular Ba2+ block than was ROMK2, indicating that changes in the COOH terminus affect ion binding to the outer part of the pore. This effect correlated with the sensitivity to inactivation by H+. We conclude that decreasing pHI increases the sensitivity of ROMK2 channels to K+o by altering the properties of the selectivity filter.


2019 ◽  
Vol 20 (S3) ◽  
Author(s):  
Liu Liu ◽  
Xiuzhen Hu ◽  
Zhenxing Feng ◽  
Xiaojin Zhang ◽  
Shan Wang ◽  
...  

Abstract Background Proteins perform their functions by interacting with acid radical ions. Recently, it was a challenging work to precisely predict the binding residues of acid radical ion ligands in the research field of molecular drug design. Results In this study, we proposed an improved method to predict the acid radical ion binding residues by using K-nearest Neighbors classifier. Meanwhile, we constructed datasets of four acid radical ion ligand (NO2−, CO32−, SO42−, PO43−) binding residues from BioLip database. Then, based on the optimal window length for each acid radical ion ligand, we refined composition information and position conservative information and extracted them as feature parameters for K-nearest Neighbors classifier. In the results of 5-fold cross-validation, the Matthew’s correlation coefficient was higher than 0.45, the values of accuracy, sensitivity and specificity were all higher than 69.2%, and the false positive rate was lower than 30.8%. Further, we also performed an independent test to test the practicability of the proposed method. In the obtained results, the sensitivity was higher than 40.9%, the values of accuracy and specificity were higher than 84.2%, the Matthew’s correlation coefficient was higher than 0.116, and the false positive rate was lower than 15.4%. Finally, we identified binding residues of the six metal ion ligands. In the predicted results, the values of accuracy, sensitivity and specificity were all higher than 77.6%, the Matthew’s correlation coefficient was higher than 0.6, and the false positive rate was lower than 19.6%. Conclusions Taken together, the good results of our prediction method added new insights in the prediction of the binding residues of acid radical ion ligands.


Author(s):  
Marco Lolicato ◽  
Andrew M. Natale ◽  
Fayal Abderemane-Ali ◽  
David Crottès ◽  
Sara Capponi ◽  
...  

K2P channels regulate nervous, cardiovascular, and immune system functions1,2 through the action of their selectivity filter (C-type) gate3-6. Although structural studies show K2P conformations that impact activity7-13, no selectivity filter conformational changes have been observed. Here, combining K2P2.1 (TREK-1) X-ray crystallography in different potassium concentrations, potassium anomalous scattering, molecular dynamics, and functional studies, we uncover the unprecedented, asymmetric, potassium-dependent conformational changes underlying K2P C-type gating. Low potassium concentrations evoke conformational changes in selectivity filter strand 1 (SF1), selectivity filter strand 2 (SF2), and the SF2-transmembrane helix 4 loop (SF2-M4 loop) that destroy the S1 and S2 ion binding sites and are suppressed by C-type gate activator ML335. Shortening the uniquely long SF2-M4 loop to match the canonical length found in other potassium channels or disrupting the conserved Glu234 hydrogen bond network supporting this loop blunts C-type gate response to various physical and chemical stimuli. Glu234 network destabilization also compromises ion selectivity, but can be reversed by channel activation, indicating that the ion binding site loss reduces selectivity similar to other channels14. Together, our data establish that C-type gating occurs through potassium-dependent order-disorder transitions in the selectivity filter and adjacent loops that respond to gating cues relayed through the SF2-M4 loop. These findings underscore the potential for targeting the SF2-M4 loop for the development of new, selective K2P channel modulators.


2001 ◽  
Vol 183 (5) ◽  
pp. 1524-1530 ◽  
Author(s):  
Phil C. Jones

ABSTRACT The multicopy subunit c of the H+-transporting F1Fo ATP synthase of Escherichia coli folds across the membrane as a hairpin of two hydrophobic α helices. The subunits interact in a front-to-back fashion, forming an oligomeric ring with helix 1 packing in the interior and helix 2 at the periphery. A conserved carboxyl, Asp61 in E. coli, centered in the second transmembrane helix is essential for H+ transport. A second carboxylic acid in the first transmembrane helix is found at a position equivalent to Ile28 in several bacteria, some the cause of serious infectious disease. This side chain has been predicted to pack proximal to the essential carboxyl in helix 2. It appears that in some of these bacteria the primary function of the enzyme is H+pumping for cytoplasmic pH regulation. In this study, Ile28was changed to Asp and Glu. Both mutants were functional. However, unlike the wild type, the mutants showed pH-dependent ATPase-coupled H+ pumping and passive H+ transport through Fo. The results indicate that the presence of a second carboxylate enables regulation of enzyme function in response to cytoplasmic pH and that the ion binding pocket is aqueous accessible. The presence of a single carboxyl at position 28, in mutants I28D/D61G and I28E/D61G, did not support growth on a succinate carbon source. However, I28E/D61G was functional in ATPase-coupled H+transport. This result indicates that the side chain at position 28 is part of the ion binding pocket.


2019 ◽  
Author(s):  
Zichen Wang ◽  
Huaxun Fan ◽  
Xiao Hu ◽  
John Khamo ◽  
Jiajie Diao ◽  
...  

<p>The receptor tyrosine kinase family transmits signals into cell via a single transmembrane helix and a flexible juxtamembrane domain (JMD). Membrane dynamics makes it challenging to study the structural mechanism of receptor activation experimentally. In this study, we employ all-atom molecular dynamics with Highly Mobile Membrane-Mimetic to capture membrane interactions with the JMD of tropomyosin receptor kinase A (TrkA). We find that PIP<sub>2 </sub>lipids engage in lasting binding to multiple basic residues and compete with salt bridge within the peptide. We discover three residues insertion into the membrane, and perturb it through computationally designed point mutations. Single-molecule experiments indicate the contribution from hydrophobic insertion is comparable to electrostatic binding, and in-cell experiments show that enhanced TrkA-JMD insertion promotes receptor ubiquitination. Our joint work points to a scenario where basic and hydrophobic residues on disordered domains interact with lipid headgroups and tails, respectively, to restrain flexibility and potentially modulate protein function.</p>


Sign in / Sign up

Export Citation Format

Share Document