scholarly journals The Cyclin-dependent Kinase Inhibitor p16INK4aPhysically Interacts with Transcription Factor Sp1 and Cyclin-dependent Kinase 4 to Transactivate MicroRNA-141 and MicroRNA-146b-5p Spontaneously and in Response to Ultraviolet Light-induced DNA Damage

2013 ◽  
Vol 288 (49) ◽  
pp. 35511-35525 ◽  
Author(s):  
Huda H. Al-Khalaf ◽  
Peer Mohideen ◽  
Shreeram C. Nallar ◽  
Dhananjaya V. Kalvakolanu ◽  
Abdelilah Aboussekhra
2018 ◽  
Vol 115 (10) ◽  
pp. 2532-2537 ◽  
Author(s):  
Frank S. Heldt ◽  
Alexis R. Barr ◽  
Sam Cooper ◽  
Chris Bakal ◽  
Béla Novák

Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation–quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.


2020 ◽  
Vol 54 (6) ◽  
pp. 1177-1198

BACKGROUND/AIMS: Compelling evidence indicates that CK2α, which is one of the two catalytic isoforms of protein kinase CK2, is required for cell viability and plays an important role in cell proliferation and differentiation. While much is known on CK2 in the context of disease states, particularly cancer, its critical role in non-cancerous cell growth has not been extensively investigated. METHODS: In the present study, we have employed a cell line derived from rat heart with inducible down-regulation of CK2α and CK2α-knockout mouse tissue to identify CK2-mediated molecular mechanisms regulating cell growth. For this, we have performed Incucyte® live-cell analysis and applied flow cytometry, western blot, immunoprecipitation, immunohistochemistry, RT-qPCR and luciferase-based methods. RESULTS: Here, we show that lack of CK2α results in significantly delayed cell cycle progression through G1, inhibition of cyclin E-CDK2 complex, decreased phosphorylation of Rb protein at S795, and inactivation of E2F transcription factor. These events are accompanied by nuclear accumulation and up-regulation of the cyclin-dependent kinase inhibitor p27KIP1 in cells and CK2α-knockout mouse tissues. We found that increased levels of p27KIP1 are mainly attributable to post-translational modifications, namely phosphorylation at S10 and T197 amino acid residues catalyzed by Dyrk1B and AMPK, respectively, as silencing of FoxO3A transcription factor, which activates CDKN1B the gene coding for p27KIP1, does not result in markedly decreased expression levels of the corresponding protein. Interestingly, simultaneous silencing of CK2α and p27KIP1 significantly impairs cell cycle progression without increasing cell death. CONCLUSION: Taken together, our study sheds light on the molecular mechanisms controlling cell cycle progression through G1 phase when myoblasts proliferation potential is impaired by CK2α depletion. Our results suggest that elevated levels of p27KIP1,which follows CK2α depletion, contribute to delay the G1-to-S phase transition. Effects seen when p27KIP1 is down-regulated are independent of CK2α and reflect the protective role exerted by p27KIP1 under unfavorable cell growth conditions.


Sign in / Sign up

Export Citation Format

Share Document