scholarly journals CD14 Mediates Toll-like Receptor 4 (TLR4) Endocytosis and Spleen Tyrosine Kinase (Syk) and Interferon Regulatory Transcription Factor 3 (IRF3) Activation in Epithelial Cells and Impairs Neutrophil Infiltration andPseudomonas aeruginosaKillingin Vivo

2013 ◽  
Vol 289 (2) ◽  
pp. 1174-1182 ◽  
Author(s):  
Sanhita Roy ◽  
Mausita Karmakar ◽  
Eric Pearlman
2015 ◽  
Vol 35 (6) ◽  
pp. 2309-2319 ◽  
Author(s):  
Won Seok Yang ◽  
Joon-Seok Kim ◽  
Nam Jeong Han ◽  
Mee Jeong Lee ◽  
Su-Kil Park

Background/Aims: High glucose activates spleen tyrosine kinase (Syk) in human proximal tubular epithelial cells (HK-2 cells), which leads to NF-κB activation and transforming growth factor-ß1 (TGF-ß1) production. We explored the signal transduction pathway from high glucose to Syk activation. Methods: The pathway was evaluated by siRNA transfection, immunoprecipitation and Western blot. Results: High glucose stimulated Syk activation within 10 min. Depletion of toll-like receptor 4 (TLR4) attenuated high glucose-induced Syk activation, NF-κB p65 nuclear translocation, and TGF-ß1 production. In addition, TLR4 inhibitor (CLI-095), TLR4-neutralizing antibody, and depletion of myeloid differentiation factor 88 (MyD88) all attenuated high glucose-induced Syk activation. As an evidence of TLR4 activation, interleukin-1 receptor-associated kinase 1 was recruited to MyD88 and TLR4 upon exposure to high glucose. Syk was co-immunoprecipitated with TLR4, and Syk bound to TLR4 was activated by high glucose. High-mobility group box-1 (HMGB-1), an endogenous activator of TLR4, rapidly increased in TLR4 immunoprecipitates upon high glucose stimulation, and this association was reduced by N-acetylcysteine, an antioxidant. An HMGB-1 inhibitor glycyrrhizin suppressed high glucose-induced Syk activation. Conclusion: Syk is constitutively associated with TLR4. High glucose induces an immediate, reactive oxygen species-dependent, extracellular release of HMGB-1 which binds to TLR4 and activates it, leading to Syk activation.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3127
Author(s):  
Jiyeon Choi ◽  
Joo Weon Lim ◽  
Hyeyoung Kim

House dust mites (HDM) are critical factors in airway inflammation. They activate respiratory epithelial cells to produce reactive oxygen species (ROS) and activate Toll-like receptor 4 (TLR4). ROS induce the expression of inflammatory cytokines in respiratory epithelial cells. Lycopene is a potent antioxidant nutrient with anti-inflammatory activity. The present study aimed to investigate whether HDM induce intracellular and mitochondrial ROS production, TLR4 activation, and pro-inflammatory cytokine expression (IL-6 and IL-8) in respiratory epithelial A549 cells. Additionally, we examined whether lycopene inhibits HDM-induced alterations in A549 cells. The treatment of A549 cells with HDM activated TLR4, induced the expression of IL-6 and IL-8, and increased intracellular and mitochondrial ROS levels. TAK242, a TLR4 inhibitor, suppressed both HDM-induced ROS production and cytokine expression. Furthermore, lycopene inhibited the HDM-induced TLR4 activation and cytokine expression, along with reducing the intracellular and mitochondrial ROS levels in HDM-treated cells. These results collectively indicated that the HDM induced TLR4 activation and increased intracellular and mitochondrial ROS levels, thus resulting in the induction of cytokine expression in respiratory epithelial cells. The antioxidant lycopene could inhibit HDM-induced cytokine expression, possibly by suppressing TLR4 activation and reducing the intracellular and mitochondrial ROS levels in respiratory epithelial cells.


2002 ◽  
Vol 168 (5) ◽  
pp. 2424-2432 ◽  
Author(s):  
Raina N. Fichorova ◽  
Amanda O. Cronin ◽  
Egil Lien ◽  
Deborah J. Anderson ◽  
Robin R. Ingalls

2020 ◽  
Vol 4 (s1) ◽  
pp. 17-17
Author(s):  
Ben Greulich ◽  
Josh Plotnik ◽  
Peter Hollenhorst

OBJECTIVES/GOALS: The objective of this research was to learn how the oncogenic transcription factor, ERG, is regulated in prostate cancer. If we could learn how ERG is regulated and which genes are important for its oncogenic phenotype in prostate cells, we could design new therapeutic strategies against ERG, which has proven to be difficult to target. METHODS/STUDY POPULATION: We conducted an shRNA screen in prostate cells to determine candidate genes and pathways that are important for ERG function. To validate the findings of the screen, we performed a variety of cell-based functional assays, including trans-well migration, wound healing, and clonogenic survival assays. To further investigate the mechanism between ERG and the genes revealed by the screen, we performed biochemical and molecular biology experiments such as Western blotting and qRT-PCR for protein and mRNA expression, co-immunoprecipitation assays to determine protein-protein interactions, and chromatin immunoprecipitation (ChIP-qPCR) to determine transcription factor binding to DNA sites. RESULTS/ANTICIPATED RESULTS: The screen revealed that genes involved in the toll-like receptor 4 (TLR4) pathway are important for ERG-mediated migration. We tested the effect of a TLR4 inhibitor on ERG function and observed decreased migration and clonogenic survival exclusively in ERG-positive cells. Expression of pMEK and pERG was reduced when TLR4 was inhibited, which suggests a mechanism in which TLR4 upregulates pMEK, leading to the phosphorylation and activation of ERG. This is supported by functional assays in which cells expressing a phosphomimetic ERG are resistant to the TLR4 inhibitor. We demonstrated that ERG drives the transcription of TLR4 and its endogenous ligands HSPA8 and BGN. Therefore, ERG can sensitize the cell to TLR4 activation by increasing the number of receptors as well as providing the ligands needed for stimulation. DISCUSSION/SIGNIFICANCE OF IMPACT: This research provides a new therapeutic pathway for treating ERG-positive patients through TLR4 inhibition. This can be beneficial because many patients become resistant to the standard therapy, leaving very few treatment options. TLR4-based therapies could provide an alternative for patients who have developed resistance.


Sign in / Sign up

Export Citation Format

Share Document