scholarly journals Regulation of Penicillin G Acylase Gene Expression inEscherichia coliby Repressor PaaX and the cAMP-cAMP Receptor Protein Complex

2004 ◽  
Vol 279 (32) ◽  
pp. 33253-33262 ◽  
Author(s):  
Hyoung Seok Kim ◽  
Tae Sun Kang ◽  
Joon Sik Hyun ◽  
Hyen Sam Kang
2021 ◽  
Vol 12 ◽  
Author(s):  
Diana Rodríguez-Valverde ◽  
Nancy León-Montes ◽  
Jorge Soria-Bustos ◽  
Jessica Martínez-Cruz ◽  
Ricardo González-Ugalde ◽  
...  

Klebsiella oxytoca is a resident of the human gut. However, certain K. oxytoca toxigenic strains exist that secrete the nonribosomal peptide tilivalline (TV) cytotoxin. TV is a pyrrolobenzodiazepine that causes antibiotic-associated hemorrhagic colitis (AAHC). The biosynthesis of TV is driven by enzymes encoded by the aroX and NRPS operons. In this study, we determined the effect of environmental signals such as carbon sources, osmolarity, and divalent cations on the transcription of both TV biosynthetic operons. Gene expression was enhanced when bacteria were cultivated in tryptone lactose broth. Glucose, high osmolarity, and depletion of calcium and magnesium diminished gene expression, whereas glycerol increased transcription of both TV biosynthetic operons. The cAMP receptor protein (CRP) is a major transcriptional regulator in bacteria that plays a key role in metabolic regulation. To investigate the role of CRP on the cytotoxicity of K. oxytoca, we compared levels of expression of TV biosynthetic operons and synthesis of TV in wild-type strain MIT 09-7231 and a Δcrp isogenic mutant. In summary, we found that CRP directly activates the transcription of the aroX and NRPS operons and that the absence of CRP reduced cytotoxicity of K. oxytoca on HeLa cells, due to a significant reduction in TV production. This study highlights the importance of the CRP protein in the regulation of virulence genes in enteric bacteria and broadens our knowledge on the regulatory mechanisms of the TV cytotoxin.


2006 ◽  
Vol 34 (1) ◽  
pp. 156-159 ◽  
Author(s):  
S. Mesa ◽  
H. Hennecke ◽  
H.-M. Fischer

In Bradyrhizobium japonicum, the nitrogen-fixing soya bean endosymbiont and facultative denitrifier, three CRP (cAMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein)-type transcription factors [FixK1, FixK2 and NnrR (nitrite and nitric oxide reductase regulator)] have been studied previously in the context of the regulation of nitrogen fixation and denitrification. The gene expression of both fixK1 and nnrR depends on FixK2, which acts as a key distributor of the ‘low-oxygen’ signal perceived by the two-component regulatory system FixLJ. While the targets for FixK1 are not known, NnrR transduces the nitrogen oxide signal to the level of denitrification gene expression. Besides these three regulators, the complete genome sequence of this organism has revealed the existence of 13 additional CRP/FNR-type proteins whose functions have not yet been studied. Based on sequence similarity and phylogenetic analysis, we discuss in this paper the peculiarities of these additional factors.


FEBS Letters ◽  
2006 ◽  
Vol 581 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Takayuki Suzuki ◽  
Hidehisa Yoshimura ◽  
Shigeki Ehira ◽  
Masahiko Ikeuchi ◽  
Masayuki Ohmori

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Jainaba Manneh-Roussel ◽  
James R. J. Haycocks ◽  
Andrés Magán ◽  
Nicolas Perez-Soto ◽  
Kerstin Voelz ◽  
...  

ABSTRACTThe bacteriumVibrio choleraeis native to aquatic environments and can switch lifestyles to cause disease in humans. Lifestyle switching requires modulation of genetic systems for quorum sensing, intestinal colonization, and toxin production. Much of this regulation occurs at the level of gene expression and is controlled by transcription factors. In this work, we have mapped the binding of cAMP receptor protein (CRP) and RNA polymerase across theV. choleraegenome. We show that CRP is an integral component of the regulatory network that controls lifestyle switching. Focusing on a locus necessary for toxin transport, we demonstrate CRP-dependent regulation of gene expression in response to host colonization. Examination of further CRP-targeted genes reveals that this behavior is commonplace. Hence, CRP is a key regulator of manyV. choleraegenes in response to lifestyle changes.IMPORTANCECholera is an infectious disease that is caused by the bacteriumVibrio cholerae. Best known for causing disease in humans, the bacterium is most commonly found in aquatic ecosystems. Hence, humans acquire cholera following ingestion of food or water contaminated withV. cholerae. Transition between an aquatic environment and a human host triggers a lifestyle switch that involves reprogramming ofV. choleraegene expression patterns. This process is controlled by a network of transcription factors. In this paper, we show that the cAMP receptor protein (CRP) is a key regulator ofV. choleraegene expression in response to lifestyle changes.


Sign in / Sign up

Export Citation Format

Share Document