scholarly journals A Novel Peroxisome Proliferator-activated Receptor γ Isoform with Dominant Negative Activity Generated by Alternative Splicing

2005 ◽  
Vol 280 (28) ◽  
pp. 26517-26525 ◽  
Author(s):  
Lina Sabatino ◽  
Amelia Casamassimi ◽  
Gianfranco Peluso ◽  
Maria Vittoria Barone ◽  
Daniela Capaccio ◽  
...  
2001 ◽  
Vol 29 (2) ◽  
pp. 227-230 ◽  
Author(s):  
V. K. K. Chatterjee

Resistance to thyroid hormone (RTH) is usually inherited in a dominant fashion, and is characterized by elevated serum thyroid hormone levels and failure to suppress pituitary secretion of thyroid-stimulating hormone, with variable refractoriness to hormone action in peripheral tissues. Two major forms of the disorder are recognized: asymptomatic individuals with generalized resistance (GRTH) and patients with thyrotoxic features suggesting predominant pituitary resistance (PRTH). In over 100 families with GRTH or PRTH, we have identified heterozygous mutations in the thyroid hormone receptor β isoform (TRβ), which localize to three regions (amino acids 234–282, 310–353 and 429–461) of the hormone-binding domain of the receptor. The mutant receptors are transcriptionally impaired, due either to reduced ligand binding or to attenuated interaction with co-activators, and inhibit wild-type TR action in a dominant-negative manner. In the TRβ crystal structure, most RTH mutations cluster around the hormone-binding pocket, with receptor regions that mediate functions (DNA binding, dimerization, corepressor recruitment) required for dominant-negative activity being devoid of natural mutations. The pathogenesis of variable tissue resistance is not fully understood, but may be related to the differing tissue distributions of TRα and TRβ, and to variable dominant-negative activity of mutant receptors on different target genes. The nuclear receptor peroxisome-proliferator-activated receptor γ (PPARγ) regulates adipogenesis and mediates the action of thiazolidinediones - novel antidiabetic agents which enhance tissue insulin sensitivity. The PPARγ gene was screened in 85 subjects with severe insulin resistance, and two different heterozygous receptor mutations (P467L and V290M) were identified in three affected individuals. The PPARγ mutants are markedly transcriptionally impaired due to altered ligand binding and co-activator recruitment. Analogous to RTH, they inhibit the function of wild-type PPARγ when co-expressed, and such dominant-negative inhibition is linked to their ability to silence basal gene transcription via aberrant interaction with co-repressors. In addition to insulin resistance, all three affected subjects developed Type II diabetes mellitus and hypertension at an unusually early age. Our findings provide compelling evidence that PPARγ is important in the control of insulin sensitivity, glucose homoeostasis and blood pressure in humans. Future studies aim to elucidate the mechanism by which this receptor regulates insulin action and vascular tone.


1999 ◽  
Vol 13 (9) ◽  
pp. 1535-1549 ◽  
Author(s):  
Philippe Gervois ◽  
Inés Pineda Torra ◽  
Giulia Chinetti ◽  
Thilo Grötzinger ◽  
Guillaume Dubois ◽  
...  

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Pimonrat Ketsawatsomkron ◽  
Deborah R Davis ◽  
Aline M Hilzendeger ◽  
Justin L Grobe ◽  
Curt D Sigmund

PPARG, a ligand-activated transcription factor plays a critical role in the regulation of blood pressure and vascular function. We hypothesized that smooth muscle cell (SMC) PPARG protects against hypertension (HT) and resistance vessel dysfunction. Transgenic mice expressing dominant negative PPARG (S-P467L) in SMC or non-transgenic controls (NT) were implanted with DOCA pellet and allowed ad libitum access to 0.15 M NaCl for 21 days in addition to regular chow and water. Blood pressure was monitored by telemetry and mesenteric arterial (MA) function was assessed by pressurized myograph. At baseline, 24-hour mean arterial pressure (MAP) was similar between NT and S-P467L mice, while the transgenic mice were tachycardic. DOCA-salt increased MAP to a much greater degree in S-P467L mice (Δ MAP; S-P467L: +34.2±6.0, NT: +13.3±5.7, p<0.05 vs NT). Heart rate was similarly decreased in both groups after DOCA-salt. Vasoconstriction to KCl, phenylephrine and endothelin-1 did not differ in MA from DOCA-salt treated NT and S-P467L, while the response to vasopressin was significantly reduced in S-P467L after DOCA-salt (% constriction at 10-8 M, S-P467L: 31.6±5.6, NT: 46.7±3.8, p<0.05 vs NT). Urinary copeptin, a surrogate marker for arginine vasopressin was similar in both groups regardless of treatment. Vasorelaxation to acetylcholine was slightly impaired in S-P467L MA compared to NT at baseline whereas this effect was further exaggerated after DOCA-salt (% relaxation at 10-5 M, S-P467L: 56.1±8.3, NT: 79.4±5.6, p<0.05 vs NT). Vascular morphology at luminal pressure of 75 mmHg showed a significant increase in wall thickness (S-P467L: 18.7±0.8, NT: 16.0±0.4, p<0.05 vs NT) and % media/lumen (S-P467L: 8.4±0.3, NT: 7.1±0.2, p<0.05 vs NT) in S-P467L MA after DOCA-salt. Expression of tissue inhibitor of metalloproteinases (TIMP)-4 and regulator of G-protein signaling (RGS)-5 transcript were 2- and 3.5-fold increased, respectively, in MA of NT with DOCA-salt compared to NT baseline. However, this induction was markedly blunted in S-P467L MA. We conclude that interference with PPARG function in SMC leads to altered gene expression crucial for normal vascular homeostasis, thereby sensitizing the mice to the effects of DOCA-salt induced HT and vascular dysfunction.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3271-3280 ◽  
Author(s):  
Istvan Szatmari ◽  
Daniel Töröcsik ◽  
Maura Agostini ◽  
Tibor Nagy ◽  
Mark Gurnell ◽  
...  

Abstract Activation of the lipid-regulated nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) modifies the immunophenotype of monocyte-derived dendritic cells (DCs). However it has not been analyzed in a systematic manner how lipid metabolism and immune regulation are connected at the transcriptional level via this receptor. Here we present the genome-wide expression analyses of PPARγ-instructed human DCs. Receptor activation was achieved by exogenous, synthetic as well as endogenous, natural means. More than 1000 transcripts are regulated during DC development by activation of PPARγ; half of the changes are positive effects. These changes appear to enhance and modulate the robust gene expression alterations associated with monocyte to DC transition. Strikingly, only genes related to lipid metabolism are overrepresented among early induced genes. As a net consequence, lipid accumulation appears to be diminished in these cells. In contrast, genes related to immune response are regulated after 24 hours, implying the existence of indirect mechanisms of modulation. Receptor dependence was established by using DCs of patients harboring a dominant-negative mutation of PPARγ. Our data show that PPARγ acts as a mostly positive transcriptional regulator in human developing DCs, acting primarily through controlling genes involved in lipid metabolism and via this, indirectly modifying the immune phenotype.


2000 ◽  
Vol 20 (3) ◽  
pp. 1008-1020 ◽  
Author(s):  
Jane E. B. Reusch ◽  
Lilliester A. Colton ◽  
Dwight J. Klemm

ABSTRACT Obesity is the result of numerous, interacting behavioral, physiological, and biochemical factors. One increasingly important factor is the generation of additional fat cells, or adipocytes, in response to excess feeding and/or large increases in body fat composition. The generation of new adipocytes is controlled by several “adipocyte-specific” transcription factors that regulate preadipocyte proliferation and adipogenesis. Generally these adipocyte-specific factors are expressed only following the induction of adipogenesis. The transcription factor(s) that are involved in initiating adipocyte differentiation have not been identified. Here we demonstrate that the transcription factor, CREB, is constitutively expressed in preadipocytes and throughout the differentiation process and that CREB is stimulated by conventional differentiation-inducing agents such as insulin, dexamethasone, and dibutyryl cAMP. Stably transfected 3T3-L1 preadipocytes were generated in which we could induce the expression of either a constitutively active CREB (VP16-CREB) or a dominant-negative CREB (KCREB). Inducible expression of VP16-CREB alone was sufficient to initiate adipogenesis as determined by triacylglycerol storage, cell morphology, and the expression of two adipocyte marker genes, peroxisome proliferator activated receptor gamma 2, and fatty acid binding protein. Alternatively, KCREB alone blocked adipogenesis in cells treated with conventional differentiation-inducing agents. These data indicate that activation of CREB was necessary and sufficient to induce adipogenesis. Finally, CREB was shown to bind to putative CRE sequences in the promoters of several adipocyte-specific genes. These data firmly establish CREB as a primary regulator of adipogenesis and suggest that CREB may play similar roles in other cells and tissues.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1498 ◽  
Author(s):  
Elisa Belloni ◽  
Anna Di Matteo ◽  
Davide Pradella ◽  
Margherita Vacca ◽  
Christopher D. R. Wyatt ◽  
...  

Alternative splicing (AS) plays an important role in expanding the complexity of the human genome through the production of specialized proteins regulating organ development and physiological functions, as well as contributing to several pathological conditions. How AS programs impact on the signaling pathways controlling endothelial cell (EC) functions and vascular development is largely unknown. Here we identified, through RNA-seq, changes in mRNA steady-state levels in ECs caused by the neuro-oncological ventral antigen 2 (Nova2), a key AS regulator of the vascular morphogenesis. Bioinformatics analyses identified significant enrichment for genes regulated by peroxisome proliferator-activated receptor-gamma (Ppar-γ) and E2F1 transcription factors. We also showed that Nova2 in ECs controlled the AS profiles of Ppar-γ and E2F dimerization partner 2 (Tfdp2), thus generating different protein isoforms with distinct function (Ppar-γ) or subcellular localization (Tfdp2). Collectively, our results supported a mechanism whereby Nova2 integrated splicing decisions in order to regulate Ppar-γ and E2F1 activities. Our data added a layer to the sequential series of events controlled by Nova2 in ECs to orchestrate vascular biology.


Sign in / Sign up

Export Citation Format

Share Document