scholarly journals Characterization of the Outer Membrane Receptor ShuA from the Heme Uptake System ofShigella dysenteriae

2007 ◽  
Vol 282 (20) ◽  
pp. 15126-15136 ◽  
Author(s):  
Kimberly A. Burkhard ◽  
Angela Wilks
2020 ◽  
Vol 295 (30) ◽  
pp. 10456-10467 ◽  
Author(s):  
Alecia T. Dent ◽  
Angela Wilks

Pseudomonas aeruginosa exhibits a high requirement for iron, which it can acquire via several mechanisms, including the acquisition and utilization of heme. The P. aeruginosa genome encodes two heme uptake systems, the heme assimilation system (Has) and the Pseudomonas heme utilization (Phu) system. Extracellular heme is sensed via the Has system, which encodes an extracytoplasmic function (ECF) σ factor system. Previous studies have shown that the transfer of heme from the extracellular hemophore HasAp to the outer membrane receptor HasR is required for activation of the σ factor HasI and upregulation of has operon expression. Here, employing site-directed mutagenesis, allelic exchange, quantitative PCR analyses, immunoblotting, and 13C-heme uptake experiments, we delineated the differential contributions of the extracellular FRAP/PNPNL loop residue His-624 in HasR and of His-221 in its N-terminal plug domain required for heme capture to heme transport and signaling, respectively. Specifically, we show that substitution of the N-terminal plug His-221 disrupts both signaling and transport, leading to dysregulation of both the Has and Phu uptake systems. Our results are consistent with a model wherein heme release from HasAp to the N-terminal plug of HasR is required to initiate signaling, whereas His-624 is required for simultaneously closing off the heme transport channel from the extracellular medium and triggering heme transport. Our results provide critical insight into heme release, signaling, and transport in P. aeruginosa and suggest a functional link between the ECF σ factor and Phu heme uptake system.


2013 ◽  
Vol 77 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Tatsuya FUNAHASHI ◽  
Tomotaka TANABE ◽  
Katsushiro MIYAMOTO ◽  
Hiroshi TSUJIBO ◽  
Jun MAKI ◽  
...  

Microbiology ◽  
2006 ◽  
Vol 152 (4) ◽  
pp. 945-954 ◽  
Author(s):  
Páraic Ó Cuív ◽  
Paul Clarke ◽  
Michael O'Connell

Pseudomonas aeruginosa utilizes several xenosiderophores under conditions of iron limitation, including the citrate hydroxamate siderophore aerobactin. Analysis of the P. aeruginosa genome sequence revealed the presence of two genes, chtA (PA4675) and PA1365, encoding proteins displaying significant similarity to the aerobactin outer-membrane receptor, IutA, of Escherichia coli. The chtA and PA1365 genes were mutated by insertional inactivation and it was demonstrated that ChtA is the outer-membrane receptor for aerobactin. ChtA also mediated the utilization of rhizobactin 1021 and schizokinen, which are structurally similar to aerobactin. In contrast to the utilization of other xenosiderophores by P. aeruginosa, there was no apparent redundancy in the utilization of aerobactin, rhizobactin 1021 and schizokinen. The utilization of citrate hydroxamate siderophores by P. aeruginosa was demonstrated to be TonB1 dependent. A Fur box was identified in the region directly upstream of chtA and it was demonstrated by the in vivo Fur titration assay that this region is capable of binding Fur and accordingly that expression of chtA is iron regulated. The PA1365 mutant was unaffected in the utilization of citrate hydroxamate siderophores.


Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1749-1757 ◽  
Author(s):  
Najla Benevides-Matos ◽  
Francis Biville

Serratia marcescens, like several other Gram-negative bacteria, possesses two functional haem uptake systems. The first, referred to as the Hem system, can transport haem present at a concentration equal to or above 10−6 M. It requires an active outer-membrane receptor which uses proton-motive force energy transmitted by the inner-membrane TonB protein. The other system, Has, takes up haem at lower concentrations and utilizes a small secreted haem-binding protein (haemophore) and its cognate TonB-dependent outer-membrane receptor HasR. Various combinations of mutations were used to examine haem uptake activity by the two systems in S. marcescens. The Hem uptake system enables S. marcescens to take up haem at a concentration of 10−6 M in the presence of various levels of iron depletion. The Has system, which enables such uptake even in the presence of lower haem concentrations, requires higher iron depletion conditions for function. Has haem uptake requires the presence of HasB, a TonB paralogue encoded by the has operon. These two systems enable S. marcescens to take up haem under various conditions from different sources, reflecting its capacity to confront conditions encountered in natural biotopes.


1986 ◽  
Vol 32 (10) ◽  
pp. 806-813
Author(s):  
Peter C. Weber ◽  
Sunil Palchaudhuri

A region of the IncFI plasmid ColV2-K94 which showed homology to the sop partitioning genes of F was cloned and characterized in an attempt to study the stability functions of this element. The sop region contained the incD incompatibility determinant common to many IncFI plasmids, but could not confer on ColV2-K94 miniplasmids the same stable inheritance found in the intact ColV2-K94; thus, other functions appear to be required for efficient plasmid maintenance. Adjacent to the area of sop homology was the X3 region, which was found to contain three inverted IS1-like sequences. The X3 region of ColV2-K94 was similar in organization to the aerobactin iron uptake region of ColV3-K30, but ColV2-K94 lacked the ability to synthesize either the aerobactin siderophore or its outer membrane receptor.


2004 ◽  
Vol 186 (13) ◽  
pp. 4067-4074 ◽  
Author(s):  
Sylvie Létoffé ◽  
Philippe Delepelaire ◽  
Cécile Wandersman

ABSTRACT Many gram-negative bacteria have specific outer membrane receptors for free heme, hemoproteins, and hemophores. Heme is a major iron source and is taken up intact, whereas hemoproteins and hemophores are not transported: the iron-containing molecule has to be stripped off at the cell surface, with only the heme moiety being taken up. The Serratia marcescens hemophore-specific outer membrane receptor HasR can transport either heme itself or heme bound to the hemophore HasA. This second mechanism is much more efficient and requires a higher TonB-ExbB-ExbD (TonB complex) concentration than does free or hemoglobin-bound heme uptake. This requirement for more of the TonB complex is associated with a higher energy requirement. Indeed, the sensitivity of heme-hemophore uptake to the protonophore carbonyl cyanide m-chlorophenyl hydrazone is higher than that of heme uptake from hemoglobin. We show that a higher TonB complex concentration is required for hemophore dissociation from the receptor. This dissociation is concomitant with heme uptake. We propose that increasing the TonB complex concentration drives more energy to the outer membrane receptor and speeds up the release of empty hemophores, which, if they remained on receptors, would inhibit heme transport.


Sign in / Sign up

Export Citation Format

Share Document