scholarly journals The plant defense signal galactinol is specifically used as a nutrient by the bacterial pathogen Agrobacterium fabrum

2018 ◽  
Vol 293 (21) ◽  
pp. 7930-7941 ◽  
Author(s):  
Thibault Meyer ◽  
Armelle Vigouroux ◽  
Magali Aumont-Nicaise ◽  
Gilles Comte ◽  
Ludovic Vial ◽  
...  

The bacterial plant pathogen Agrobacterium fabrum uses periplasmic-binding proteins (PBPs) along with ABC transporters to import a wide variety of plant molecules as nutrients. Nonetheless, how A. fabrum acquires plant metabolites is incompletely understood. Using genetic approaches and affinity measurements, we identified here the PBP MelB and its transporter as being responsible for the uptake of the raffinose family of oligosaccharides (RFO), which are the most widespread d-galactose–containing oligosaccharides in higher plants. We also found that the RFO precursor galactinol, recently described as a plant defense molecule, is imported into Agrobacterium via MelB with nanomolar range affinity. Structural analyses and binding mode comparisons of the X-ray structures of MelB in complex with raffinose, stachyose, galactinol, galactose, and melibiose (a raffinose degradation product) revealed how MelB recognizes the nonreducing end galactose common to all these ligands and that MelB has a strong preference for a two-unit sugar ligand. Of note, MelB conferred a competitive advantage to A. fabrum in colonizing the rhizosphere of tomato plants. Our integrative work highlights the structural and functional characteristics of melibiose and galactinol assimilation by A. fabrum, leading to a competitive advantage for these bacteria in the rhizosphere. We propose that the PBP MelB, which is highly conserved among both symbionts and pathogens from Rhizobiace family, is a major trait in these bacteria required for early steps of plant colonization.

2019 ◽  
Vol 476 (1) ◽  
pp. 165-178 ◽  
Author(s):  
Loïc Marty ◽  
Armelle Vigouroux ◽  
Magali Aumont-Nicaise ◽  
Franck Pelissier ◽  
Thibault Meyer ◽  
...  

AbstractAgrobacterium tumefaciens pathogens genetically modify their host plants to drive the synthesis of opines in plant tumors. The mannityl-opine family encompasses mannopine, mannopinic acid, agropine and agropinic acid. These opines serve as nutrients and are imported into bacteria via periplasmic-binding proteins (PBPs) in association with ABC transporters. Structural and affinity data on agropine and agropinic acid opines bound to PBPs are currently lacking. Here, we investigated the molecular basis of AgtB and AgaA, proposed as the specific PBP for agropine and agropinic acid import, respectively. Using genetic approaches and affinity measurements, we identified AgtB and its transporter as responsible for agropine uptake in agropine-assimilating agrobacteria. Nonetheless, we showed that AgtB binds agropinic acid with a higher affinity than agropine, and we structurally characterized the agropinic acid-binding mode through three crystal structures at 1.4, 1.74 and 1.9 Å resolution. In the crystallization time course, obtaining a crystal structure of AgtB with agropine was unsuccessful due to the spontaneous lactamization of agropine into agropinic acid. AgaA binds agropinic acid only with a similar affinity in nanomolar range as AgtB. The structure of AgaA bound to agropinic acid at 1.65 Å resolution defines a different agropinic acid-binding signature. Our work highlights the structural and functional characteristics of two efficient agropinic acid assimilation pathways, of which one is also involved in agropine assimilation.


2020 ◽  
Vol 19 (16) ◽  
pp. 1949-1965 ◽  
Author(s):  
Natalia Szkaradek ◽  
Daniel Sypniewski ◽  
Dorota Żelaszczyk ◽  
Sabina Gałka ◽  
Paulina Borzdziłowska ◽  
...  

Background: Natural plant metabolites and their semisynthetic derivatives have been used for years in cancer therapy. Xanthones are oxygenated heterocyclic compounds produced as secondary metabolites by higher plants, fungi or lichens. Xanthone core may serve as a template in the synthesis of many derivatives that have broad biological activities. Objective: This study synthesized a series of 17 new xanthones, and their anticancer potential was also evaluated. Methods: The anticancer potential was evaluated in vitro using a highly invasive T24 cancer cell line. Direct cytotoxic effects of the xanthones were established by IC50 estimation based on XTT assay. Results: 5 compounds of the total 17 showed significant cytotoxicity toward the studied cancer cultures and were submitted to further detailed analysis, including studies examining their influence on gelatinase A and B expression, as well as on the cancer cells migration and adhesion to an extracellular matrix. These analyses were carried out on five human tumor cell lines: A2780 (ovarian cancer), A549 (lung cancer), HeLa (cervical cancer), Hep G2 (liver cancer), and T24 (urinary bladder cancer). All the compounds, especially 4, showed promising anticancer activity: they exhibited significant cytotoxicity towards all the evaluated cell lines, including MCF-7 breast cancer, and hindered migration-motility activity of cancer cells demonstrating more potent activity than α-mangostin which served as a reference xanthone. Conclusion: These results suggest that our xanthone derivatives may be further analyzed in order to include them in cancer treatment protocols.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jerónimo Laiolo ◽  
Priscila Ailin Lanza ◽  
Oscar Parravicini ◽  
Cecilia Barbieri ◽  
Daniel Insuasty ◽  
...  

AbstractP-gp-associated multidrug resistance is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure–activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone to the moiety bearing the pyrimidine favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4–7 and 12 is required for inhibition.


2021 ◽  
Author(s):  
Jerónimo Laiolo ◽  
Priscila Ailin Lanza ◽  
Oscar Parravicini ◽  
Cecilia Barbieri ◽  
Daniel Insuasty ◽  
...  

Abstract P-gp-associated multidrug resistance (MDR) is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure-activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone moiety favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4–7 and 12 is required for inhibition.


1997 ◽  
Vol 87 (1) ◽  
pp. 108-122 ◽  
Author(s):  
Nicole Benhamou ◽  
Patrice Rey ◽  
Mohamed Chérif ◽  
John Hockenhull ◽  
Yves Tirilly

The influence exerted by the mycoparasite Pythium oligandrum in triggering plant defense reactions was investigated using an experimental system in which tomato plants were infected with the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. To assess the antagonistic potential of P. oligandrum against F. oxysporum f. sp. radicis-lycopersici, the interaction between the two fungi was studied by scanning and transmission electron microscopy (SEM and TEM, respectively). SEM investigations of the interaction region between the fungi demonstrated that collapse and loss of turgor of F. oxysporum f. sp. radicis-lycopersici hyphae began soon after close contact was established with P. oligandrum. Ultrastructural observations confirmed that intimate contact between hyphae of P. oligandrum and cells of the pathogen resulted in a series of disturbances, including generalized disorganization of the host cytoplasm, retraction of the plasmalemma, and, finally, complete loss of the protoplasm. Cytochemical labeling of chitin with wheat germ agglutinin (WGA)/ovomucoid-gold complex showed that, except in the area of hyphal penetration, the chitin component of the host cell walls was structurally preserved at a time when the host cytoplasm had undergone complete disorganization. Interestingly, the same antagonistic process was observed in planta. The specific labeling patterns obtained with the exoglucanase-gold and WGA-ovomucoid-gold complexes confirmed that P. oligandrum successfully penetrated invading cells of the pathogen without causing substantial cell wall alterations, shown by the intense labeling of chitin. Cytological investigations of samples from P. oligandrum-inoculated tomato roots revealed that the fungus was able to colonize root tissues without inducing extensive cell damage. However, there was a novel finding concerning the structural alteration of the invading hyphae, evidenced by the frequent occurrence of empty fungal shells in root tissues. Pythium ingress in root tissues was associated with host metabolic changes, culminating in the elaboration of structural barriers at sites of potential fungal penetration. Striking differences in the extent of F. oxysporum f. sp. radicis-lycopersici colonization were observed between P. oligandrum-inoculated and control tomato plants. In control roots, the pathogen multiplied abundantly through much of the tissues, whereas in P. oligandrum-colonized roots pathogen growth was restricted to the outermost root tissues. This restricted pattern of pathogen colonization was accompanied by deposition of newly formed barriers beyond the infection sites. These host reactions appeared to be amplified compared to those seen in nonchallenged P. oligandrum-infected plants. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. Wall appositions contained large amounts of callose, in addition to be infiltrated with phenolic compounds. The labeling pattern obtained with gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged P. oligandrum-inoculated tomato roots. Such compounds accumulated in the host cell walls and intercellular spaces. The wall-bound chitin component in Fusarium hyphae colonizing P. oligandrum-inoculated roots was preserved at a time when hyphae had undergone substantial degradation. These observations provide the first convincing evidence that P. oligandrum has the potential to induce plant defense reactions in addition to acting as a mycoparasite.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Lukasz L. Stelinski ◽  
Rajinder S. Mann ◽  
Jared G. Ali ◽  
Sara L. Hermann ◽  
Siddharth Tiwari ◽  
...  

2009 ◽  
Vol 22 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Saskia A. Hogenhout ◽  
Renier A. L. Van der Hoorn ◽  
Ryohei Terauchi ◽  
Sophien Kamoun

Plant-associated organisms secrete proteins and other molecules to modulate plant defense circuitry and enable colonization of plant tissue. Understanding the molecular function of these secreted molecules, collectively known as effectors, became widely accepted as essential for a mechanistic understanding of the processes underlying plant colonization. This review summarizes recent findings in the field of effector biology and highlights the common concepts that have emerged from the study of cellular plant pathogen effectors.


2021 ◽  
Author(s):  
Sijia Liu ◽  
xian li ◽  
yiyang zhao ◽  
jianbo xie

Abstract Background: Small RNAs (sRNAs) are hypothesized to contribute to plant defense responses by increasing the overall genetic diversity and regulating gene expression; however, their origins and functional importance in plant defense remain unclear. Here, we use Illumina sequencing to assess how sRNA populations vary in the Chinese white poplar (Populus tomentosa) during a rust fungus (Melampsora larici-populina) infection. We sampled sRNAs from the biotrophic growth phase (T02; 48 h post infection) and the urediniospore formation and release phase (T03; 168 h), two essential stages associated with plant colonization and biotrophic growth in rust fungi. Results: The proportion of siRNA clusters located in pseudogenes and transposons was significantly larger than would be expected by chance and infection-stage-specific differences in siRNAs primarily originated from those in the transposon regions. We also found that the abundance of clusters comprising 24-nt siRNAs located in the transposon and intergenic regions underwent more substantial changes as the infection progressed. A target analysis revealed that 95% of fungal genes were predicted to be targets of Populus sRNAs. Pathogen effector genes were targeted by more sRNAs identified during the biotrophic growth and urediniospores formation and release phases than in the control plants, suggesting a clear selection for sRNA-target interactions. Compared with the miRNAs conserved between different plant species, a significantly higher proportion of Populus-specific miRNAs appeared to target NB-LRR genes. Conclusions: This integrated study on the plant colonization and biotrophic growth in rust fungi profiles could provide evolutionary insights into the origin and potential roles of the sRNAs in plant defense, coevolution with pathogens, and functional innovation.


2021 ◽  
Vol 37 (5) ◽  
pp. 415-427
Author(s):  
Anne J. Anderson ◽  
Young Cheol Kim

A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as “vaccines” to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant’s responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.


Sign in / Sign up

Export Citation Format

Share Document