stress metabolites
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 1)

2022 ◽  
Vol 178 ◽  
pp. 125-133
Author(s):  
Luyang Xiong ◽  
Michael McCoy ◽  
Hitoshi Komuro ◽  
Xiaoxia Z. West ◽  
Valentin Yakubenko ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Lauric Feugere ◽  
Lauren Angell ◽  
James Fagents ◽  
Rebecca Nightingale ◽  
Kirsty Rowland ◽  
...  

Studies on pH stress in marine animals typically focus on direct or species-specific aspects. We here test the hypothesis that a drop to pH = 7.6 indirectly affects the intra- and interspecific interactions of benthic invertebrates by means of chemical communication. We recorded fitness-relevant behaviours of small hermit crabs Diogenes pugilator, green shore crabs Carcinus maenas, and harbour ragworms Hediste diversicolor in response to short-term pH drop, and to putative stress metabolites released by conspecifics or gilt-head sea bream Sparus aurata during 30 min of acute pH drop. Not only did acute pH drop itself impair time to find a food cue in small hermit crabs and burrowing in harbour ragworms, but similar effects were observed under exposure to pH drop-induced stress metabolites. Stress metabolites from S. aurata, but not its regular control metabolites, also induced avoidance responses in all recipient species. Here, we confirm that a short-term abrupt pH drop, an abiotic stressor, has the capacity to trigger the release of metabolites which induce behavioural responses in conspecific and heterospecific individuals, which can be interpreted as a behavioural cost. Our findings that stress responses can be indirectly propagated through means of chemical communication warrant further research to confirm the effect size of the behavioural impairments caused by stress metabolites and to characterise their chemical nature.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1753
Author(s):  
Anne Lee Solevåg ◽  
Svetlana N. Zykova ◽  
Per Medbøe Thorsby ◽  
Georg M. Schmölzer

There is a need for feasible and non-invasive diagnostics in perinatal asphyxia. Metabolomics is the study of small molecular weight products of cellular metabolism that may, directly and indirectly, reflect the level of oxidative stress. Saliva analysis is a novel approach that has a yet unexplored potential in metabolomics in perinatal asphyxia. The aim of this review was to give an overview of metabolomics studies of oxidative stress in perinatal asphyxia, particularly searching for studies analyzing non-invasively collected biofluids including saliva. We searched the databases PubMed/Medline and included 11 original human and 4 animal studies. In perinatal asphyxia, whole blood, plasma, and urine are the most frequently used biofluids used for metabolomics analyses. Although changes in oxidative stress-related salivary metabolites have been reported in adults, the utility of this approach in perinatal asphyxia has not yet been explored. Human and animal studies indicate that, in addition to antioxidant enzymes, succinate and hypoxanthine, as well acylcarnitines may have discriminatory diagnostic and prognostic properties in perinatal asphyxia. Researchers may utilize the accumulating evidence of discriminatory metabolic patterns in perinatal asphyxia to develop bedside methods to measure oxidative stress metabolites in perinatal asphyxia. Although only supported by indirect evidence, saliva might be a candidate biofluid for such point-of-care diagnostics.


2021 ◽  
Vol 37 (5) ◽  
pp. 415-427
Author(s):  
Anne J. Anderson ◽  
Young Cheol Kim

A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as “vaccines” to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant’s responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1398
Author(s):  
Haniyeh Koochak ◽  
Jutta Ludwig-Müller

Salt stress is among the most challenging abiotic stress situations that a plant can experience. High salt levels do not only occur in areas with obvious salty water, but also during drought periods where salt accumulates in the soil. The moss Physcomitrium patens became a model for studying abiotic stress in non-vascular plants. Here, we show that high salt concentrations can be tolerated in vitro, and that auxin homeostasis is connected to the performance of P. patens under these stress conditions. The auxin levels can be regulated by conjugating IAA to amino acids by two members of the family of GH3 protein auxin amino acid-synthetases that are present in P. patens. Double GH3 gene knock-out mutants were more tolerant to high salt concentrations. Furthermore, free IAA levels were differentially altered during the time points investigated. Since, among the mutant lines, an increase in IAA on at least one NaCl concentration tested was observed, we treated wild type (WT) plants concomitantly with NaCl and IAA. This experiment showed that the salt tolerance to 100 mM NaCl together with 1 and 10 µM IAA was enhanced during the earlier time points. This is an additional indication that the high IAA levels in the double GH3-KO lines could be responsible for survival in high salt conditions. While the high salt concentrations induced several selected stress metabolites including phenols, flavonoids, and enzymes such as peroxidase and superoxide dismutase, the GH3-KO genotype did not generally participate in this upregulation. While we showed that the GH3 double KO mutants were more tolerant of high (250 mM) NaCl concentrations, the altered auxin homeostasis was not directly involved in the upregulation of stress metabolites.


2021 ◽  
Author(s):  
Lauric Feugere ◽  
Lauren Angell ◽  
James Fagents ◽  
Rebecca Nightingale ◽  
Kirsty Rowland ◽  
...  

Studies on pH stress in marine animals typically focus on direct or species-specific aspects. We here test the hypothesis that a drop to pH = 7.6 indirectly affects the intra- and interspecific interactions of benthic invertebrates by means of chemical communication. We recorded fitness-relevant behaviours of small hermit crabs Diogenes pugilator, green shore crabs Carcinus maenas, and harbour ragworms Hediste diversicolor in response to short-term pH drop, and to putative stress metabolites released by conspecifics or gilt-head sea bream Sparus aurata during 30 minutes of acute pH drop. Not only did acute pH drop itself impair time to find a food cue in small hermit crabs and burrowing in harbour ragworms, but similar effects were observed under exposure to pH drop-induced stress metabolites. Stress metabolites from S. aurata, but not its regular control metabolites, also induced avoidance responses in all recipient species. Here, we confirm that a short-term abrupt pH drop, an abiotic stressor, has the capacity to trigger the release of metabolites which induce behavioural responses in conspecific and heterospecific individuals, which can be interpreted as a behavioural cost. Our findings that stress responses can be indirectly propagated through means of chemical communication warrant further research to confirm the effect size of the behavioural impairments caused by stress metabolites and to characterise their chemical nature.


Talanta ◽  
2021 ◽  
pp. 122275
Author(s):  
Ayman Chmayssem ◽  
Nicolas Verplanck ◽  
Constantin Edi Tanase ◽  
Guillaume Costa ◽  
Karen Monsalve-Grijalba ◽  
...  

Author(s):  
Johanna Krahmer ◽  
Ammad Abbas ◽  
Virginie Mengin ◽  
Hirofumi Ishihara ◽  
Andrés Romanowski ◽  
...  

Abstract Phytochrome (phy) photoreceptors are known to regulate plastic growth responses to vegetation shade. However, recent reports also suggest an important role for phys in carbon resource management, metabolism, and growth. Here, we use 13CO2 labelling patterns in multi-allele phy mutants to investigate the role of phy in the control of metabolic fluxes. We also combine quantitative data of 13C incorporation into protein and cell wall polymers, gas exchange measurements and system modelling to investigate why biomass is decreased in adult multi-allele phy mutants. Phy influences the synthesis of stress metabolites like raffinose and proline, and the accumulation of sugars, possibly through regulating vacuolar sugar transport. Remarkably, despite their modified metabolism and vastly altered architecture, growth rates in adult phy mutants resemble those of wild-type plants. Our results point to delayed seedling growth and smaller cotyledon size as the cause of the adult-stage phy mutant biomass defect. Our data signify a role for phy in metabolic stress physiology, carbon partitioning and illustrate that phy action at the seedling stage sets the trajectory for adult biomass production.


Author(s):  
Vanessa Gambichler ◽  
Giuseppe C. Zuccarello ◽  
Ulf Karsten

AbstractIntertidal algae have to cope with diurnally and seasonally fluctuating environmental factors such as salinity, temperature, dehydration, and light. In New Zealand, solar radiation, including the ultraviolet wavelengths, is also an important stress factor for such algae. Therefore, two native (Bostrychia arbuscula W.H.Harvey [Ceramiales], Champia novae-zelandiae (J.D.Hooker & Harvey) Harvey [Rhodymeniales]) and one introduced red algal taxon (Schizymenia spp. J. Agardh [Nemastomatales]) were investigated over 12 months in terms of stress metabolites which contribute to ultraviolet radiation (UVR) and salinity tolerance. Mycosporine-like amino acids (MAAs), which act as sunscreens, and organic osmolytes were qualitatively and quantitatively analyzed. Porphyra-334, shinorine, and palythine were the most dominant MAAs yet distributed differently among the species. B. arbuscula showed a correlation between photosynthetically active radiation (PAR)/UVR and slightly higher MAA concentrations in summer. In contrast, C. novae-zelandiae displayed the lowest level of MAAs in summer, and no correlation was found between MAA values and solar radiation. In Schizymenia spp., the highest MAA amounts were found in summer, and for most months, a correlation with PAR/UV radiation was visible. While digeneaside and sorbitol were the dominant organic osmolytes in B. arbuscula, floridoside occurred in C. novae-zelandiae and Schizymenia spp. Only B. arbuscula exhibited higher organic osmolyte concentrations in summer. In contrast, floridoside contents in C. novae-zelandiae and Schizymenia spp. were low and highly variable over the course of the seasons. Our data indicate that both native red algal species are well acclimated to the intertidal zone. For the introduced Schizymenia spp., a more narrow salinity tolerance can be assumed, while the high MAA values may explain its establishment in New Zealand.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Nikola S. Staykov ◽  
Mihail Angelov ◽  
Veselin Petrov ◽  
Pavel Minkov ◽  
Aakansha Kanojia ◽  
...  

Abiotic stresses, which at the molecular level leads to oxidative damage, are major determinants of crop yield loss worldwide. Therefore, considerable efforts are directed towards developing strategies for their limitation and mitigation. Here the superoxide-inducing agent paraquat (PQ) was used to induce oxidative stress in the model species Arabidopsis thaliana and the crops tomato and pepper. Pre-treatment with the biostimulant SuperFifty (SF) effectively and universally suppressed PQ-induced leaf lesions, H2O2 build up, cell destruction and photosynthesis inhibition. To further investigate the stress responses and SF-induced protection at the molecular level, we investigated the metabolites by GC-MS metabolomics. PQ induced specific metabolic changes such as accumulation of free amino acids (AA) and stress metabolites. These changes were fully prevented by the SF pre-treatment. Moreover, the metabolic changes of the specific groups were tightly correlating with their phenotypic characteristics. Overall, this study presents physiological and metabolomics data which shows that SF protects against oxidative stress in all three plant species.


Sign in / Sign up

Export Citation Format

Share Document