scholarly journals Musashi interaction with poly(A)-binding protein is required for activation of target mRNA translation

2019 ◽  
Vol 294 (28) ◽  
pp. 10969-10986 ◽  
Author(s):  
Chad E. Cragle ◽  
Melanie C. MacNicol ◽  
Stephanie D. Byrum ◽  
Linda L. Hardy ◽  
Samuel G. Mackintosh ◽  
...  

The Musashi family of mRNA translational regulators controls both physiological and pathological stem cell self-renewal primarily by repressing target mRNAs that promote differentiation. In response to differentiation cues, Musashi can switch from a repressor to an activator of target mRNA translation. However, the molecular events that distinguish Musashi-mediated translational activation from repression are not understood. We have previously reported that Musashi function is required for the maturation of Xenopus oocytes and specifically for translational activation of specific dormant maternal mRNAs. Here, we employed MS to identify cellular factors necessary for Musashi-dependent mRNA translational activation. We report that Musashi1 needs to associate with the embryonic poly(A)-binding protein (ePABP) or the canonical somatic cell poly(A)-binding protein PABPC1 for activation of Musashi target mRNA translation. Co-immunoprecipitation studies demonstrated an increased Musashi1 interaction with ePABP during oocyte maturation. Attenuation of endogenous ePABP activity severely compromised Musashi function, preventing downstream signaling and blocking oocyte maturation. Ectopic expression of either ePABP or PABPC1 restored Musashi-dependent mRNA translational activation and maturation of ePABP-attenuated oocytes. Consistent with these Xenopus findings, PABPC1 remained associated with Musashi under conditions of Musashi target mRNA de-repression and translation during mammalian stem cell differentiation. Because association of Musashi1 with poly(A)-binding proteins has previously been implicated only in repression of Musashi target mRNAs, our findings reveal novel context-dependent roles for the interaction of Musashi with poly(A)-binding protein family members in response to extracellular cues that control cell fate.

2009 ◽  
Vol 21 (9) ◽  
pp. 62
Author(s):  
K. M. Gunter ◽  
B. A. Fraser ◽  
A. P. Sobinoff ◽  
N. A. Siddall ◽  
G. R. Hime ◽  
...  

Follicular development and oocyte maturation in mammals requires the temporal and spatial control of protein production. Consequently, it is hypothesised that the preovulatory follicle represses mRNA translation until specific proteins are required during oocyte maturation. Increasingly RNA-binding proteins are being recognised as important contributors to germ cell development, particularly during oocyte transcriptional quiescence. We have identified the presence of RNA-binding protein musashi-1 (Msi-1) mRNA within the mouse ovary and mature mouse oocyte, where the protein is believed to act as a translational repressor by binding to specific sequences within the 3' UTR of target mRNA molecules. Recent studies in various mammalian systems have identified p21 WAF1, cdkn2a, notch and m-numb as potential targets of Msi-1. We have also identified morf4l1 as a potential target through preliminary pulldown and microarray analysis using a GST tagged Msi-1 recombinant protein. To further study these potential targets, a transgenic Msi-1 mouse was produced to overexpress the RNA-binding protein in the developing oocyte. Real time PCR, performed on intact ovaries of WT and Tg mice, has so far demonstrated a 1.5-fold increase in Msi-1 expression in tgMsi-1/+ ovaries, above WT ovary expression. Real time PCR analysis of Msi-1 target mRNA expression has also shown an overall increase in expression in the tgMsi-1/+ ovaries of p21 WAF1 (~2.5-fold), cdkn2a (~2-fold), and notch (~3-fold). However m-numb and morf4l1 do not appear to be targets of Msi-1 in the oocyte, with no significant difference in expression between the WT and tgMsi-1/+ ovaries analysed. Functional quantification of oocyte development reveals a significantly less oocytes produced from superovulated juvenile mice compared with wild type litter mates. Therefore, preliminary analysis suggests that Msi-1 may play a role in binding the transcripts of genes necessary for cell cycle regulation and chromatin remodelling, characteristic of meiotic progression and oocyte development.


2020 ◽  
Vol 133 (23) ◽  
pp. jcs249128
Author(s):  
Natsumi Takei ◽  
Yuki Takada ◽  
Shohei Kawamura ◽  
Keisuke Sato ◽  
Atsushi Saitoh ◽  
...  

ABSTRACTTemporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.


2020 ◽  
Author(s):  
Natsumi Takei ◽  
Yuki Takada ◽  
Shohei Kawamura ◽  
Atsushi Saitoh ◽  
Jenny Bormann ◽  
...  

AbstractTemporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate timings to promote the progression of meiosis and development. Here, we show that changes in structures and states of the RNA-binding protein Pumilio1 regulate the translation of target mRNAs and progression of oocyte maturation. Pumilio1 was shown to bind to Mad2 and Cyclin B1 mRNAs, assemble highly clustered solid-like aggregates, and surround Mad2 and Cyclin B1 RNA granules in mouse oocytes. These Pumilio1 aggregates were dissolved by phosphorylation prior to the translational activation of target mRNAs. Stabilization of Pumilio1 aggregates prevented the translational activation of target mRNAs and oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.


2020 ◽  
Author(s):  
Kira Allmeroth ◽  
Christine S. Kim ◽  
Andrea Annibal ◽  
Andromachi Pouikli ◽  
Carlos Andrés Chacón-Martínez ◽  
...  

AbstractStem cell differentiation is accompanied by an increase in mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine, and spermine that are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigated the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. HFSCs showed lower translation rates than progenitor cells, and a forced suppression of translation by direct targeting of the ribosome or through specific depletion of natural polyamines elevated stemness. In addition, we identified N1-acetylspermidine as a novel parallel regulator of cell fate decisions, increasing proliferation without reducing translation. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions.Key PointsLow mRNA translation rates characterize hair follicle stem cell (HFSC) stateDepletion of natural polyamines enriches HFSCs via reduced translationN1-acetylspermidine promotes HFSC state without reducing translationN1-acetylspermidine expands the stem cell pool through elevated proliferation


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Cai-Rong Yang ◽  
Gabriel Rajkovic ◽  
Enrico Maria Daldello ◽  
Xuan G. Luong ◽  
Jing Chen ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A555-A555
Author(s):  
Katherine Bronson ◽  
Meenakshisundaram Balasubramaniam ◽  
Linda Hardy ◽  
Gwen V Childs ◽  
Melanie C MacNicol ◽  
...  

Abstract The Musashi RNA-binding protein functions as a gatekeeper of cell maturation and plasticity through the control of target mRNA translation. It is understood that Musashi promotes stem cell self-renewal and opposes differentiation. While Musashi is best characterized as a repressor of target mRNA translation, we have shown that Musashi can activate target mRNA translation in a cell context specific manner via regulatory phosphorylation on two evolutionarily conserved C-terminal serine residues. Our recent work has found that Musashi is expressed in pituitary stem cells as well as in differentiated hormone producing cell lineages in the adult pituitary. We hypothesize that Musashi maintains cell fate plasticity in the adult pituitary to allow the gland to modulate hormone production in response to changing organismal needs. Here, we seek to understand the regulation of Musashi function. Both Musashi isoforms (Musashi1 and Musashi2) contain two RNA-recognition motifs (RRMs) that bind to specific sequences in the 3’-UTR of target mRNA transcripts; however, neither isoform has enzymatic properties and thus functions through interactions with other proteins to regulate translational outcomes, but the identity and role of Musashi partner proteins is largely unknown. In this study, we have identified co-associated partner proteins that functionally contribute to Musashi-dependent mRNA translational activation during the maturation of Xenopus oocytes. Using mass spectrometry, we identified 29 co-associated proteins that interact specifically with Musashi1 during oocyte maturation and determined that the Musashi co-associated proteins ePABP, PABP4, LSM14A/B, CELF2, PUM1, ELAV1, ELAV2, and DDX6 attenuated oocyte maturation through individual antisense DNA oligo knockdowns. An assessment of the role of these cofactors in the control of Musashi-dependent target mRNA translation is in progress. In addition to studying co-associated proteins, we have created a computational 3D model of the Musashi1 molecule to assist in our investigation Musashi dimerization. This model has indicated that both Musashi1 dimerization and Musashi1:Musashi2 heterodimerization are energetically favorable, and co-pulldown studies have verified both Musashi1 homo-dimerization and Musashi1:Musashi2 heterodimerization in vivo. Computational modeling of Musashi dimer complexes has also identified the key amino acids necessary for these interactions. The contribution of each co-associated protein’s influence on Musashi-dependent translation, relative to the requirement for Musashi:Musashi dimerization, is expected to provide unparalleled insight into regulation of Musashi action. Moreover, cell type specific regulation of association of Musashi co-factors would directly influence Musashi target mRNA translation in oocyte maturation and during pituitary cell plasticity.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gabriel N Aughey ◽  
Alicia Estacio Gomez ◽  
Jamie Thomson ◽  
Hang Yin ◽  
Tony D Southall

During development eukaryotic gene expression is coordinated by dynamic changes in chromatin structure. Measurements of accessible chromatin are used extensively to identify genomic regulatory elements. Whilst chromatin landscapes of pluripotent stem cells are well characterised, chromatin accessibility changes in the development of somatic lineages are not well defined. Here we show that cell-specific chromatin accessibility data can be produced via ectopic expression of E. coli Dam methylase in vivo, without the requirement for cell-sorting (CATaDa). We have profiled chromatin accessibility in individual cell-types of Drosophila neural and midgut lineages. Functional cell-type-specific enhancers were identified, as well as novel motifs enriched at different stages of development. Finally, we show global changes in the accessibility of chromatin between stem-cells and their differentiated progeny. Our results demonstrate the dynamic nature of chromatin accessibility in somatic tissues during stem cell differentiation and provide a novel approach to understanding gene regulatory mechanisms underlying development.


Sign in / Sign up

Export Citation Format

Share Document