scholarly journals A positive feedback loop involving nuclear factor IB and calpain 1 suppresses glioblastoma cell migration

2019 ◽  
Vol 294 (34) ◽  
pp. 12638-12654 ◽  
Author(s):  
The Minh Vo ◽  
Saket Jain ◽  
Rebecca Burchett ◽  
Elizabeth A. Monckton ◽  
Roseline Godbout
2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Yan Ding ◽  
Guiping Wang ◽  
Meixiao Zhan ◽  
Xiaohan Sun ◽  
Yanran Deng ◽  
...  

AbstractMetastasis is an important cause of death from malignant tumors. It is of great significance to explore the molecular mechanism of metastasis for the development of anti-cancer drugs. Here, we find that the Hippo pathway hampers tumor cell metastasis in vivo. Silence of hpo or its downstream wts promotes tumor cell migration in a Yki-dependent manner. Furthermore, we identify that inhibition of the Hippo pathway promotes tumor cell migration through transcriptional activating src42A, a Drosophila homolog of the SRC oncogene. Yki activates src42A transcription through direct binding its intron region. Intriguingly, Src42A further increases Yki transcriptional activity to form a positive feedback loop. Finally, we show that SRC is also a target of YAP and important for YAP to promote the migration of human hepatocellular carcinoma cells. Together, our findings uncover a conserved Yki/YAP-Src42A/SRC positive feedback loop promoting tumor cell migration and provide SRC as a potential therapeutic target for YAP-driven metastatic tumors.


2022 ◽  
Author(s):  
Haiyan Piao ◽  
Lingfeng Fu ◽  
Yang Liu ◽  
Yue Wang ◽  
Xiangyu Meng ◽  
...  

Abstract Background: Hypoxia and inflammation tumor microenvironment (TME) play a crucial role in tumor development and progression. Although increased understanding of TME contributed to gastric cancer (GC) progression and prognosis, the direct interaction between macrophage and GC cells was not fully understood.Methods: Hypoxia and normoxia macrophage microarrays of GEO database was analyzed. The peripheral blood mononuclear cell acquired from the healthy volunteers. The expression of CXCL8 in GC tissues and cell lines was detected by quantitative reverse transcription PCR (qRT-PCR), western-blot, Elisa and immunofluorescence. Cell proliferation, migration, and invasion were evaluated by cell counting kit 8 (CCK8), colony formation, real-time imaging of cell migration and transwell. Luciferase reporter assays and chromatin immunoprecipitation were used to identify the interaction between transcription factor and target gene. Especially, a series of truncated and mutation reporter genes were applied to identify precise binding sites.The corresponding functions were verified in the complementation test and in vivo animal experiment.Results: Our results revealed that Hypoxia triggered macrophage secreted C-X-C Motif Chemokine Ligand 8 (CXCL8), which induced GC invasion and proliferation. This macrophage-induced GC progression was CXCL8 activated C-X-C Motif Chemokine Receptor 1/2 (CXCR1/2) on the GC cell membrane subsequently hyperactivated Janus kinase 1/ Signal transducer and activator of transcription 1 (JAK/STAT1) signaling pathway. Then, the transcription factor STAT1 directly led to the overexpression and secretion of Interleukin 10 (IL-10). Correspondingly, IL-10 induced the M2-type polarization of macrophages through the Nuclear Factor kappa B (NF-κB) pathway-dependent mechanism and continued to increase the expression and secretion of CXCL8 through the transcription factor Nuclear Factor Kappa B Subunit 1 (NFKB1, p50). It suggested a positive feedback loop between macrophage and GC. In clinical GC samples, increased CXCL8 predicted a patient's pessimistic outcome.Conclusion: Our work identified a positive feedback loop governing cancer cells and macrophage in GC that contributed to tumor progression and patient outcome.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Fang‐Jen Scott Lee ◽  
Kuan‐Jung Chen ◽  
Tsai‐Chen Chiang ◽  
Chia‐Jung Yu

2018 ◽  
Author(s):  
Ashley M. Lakoduk ◽  
Philippe Roudot ◽  
Marcel Mettlen ◽  
Heather M. Grossman ◽  
Sandra L. Schmid ◽  
...  

ABSTRACTMultiple mechanisms contribute to cancer cell progression and metastatic activity, including changes in endocytic trafficking and signaling of cell surface receptors. We report that gain-of-function (GOF) mutant p53 expression enhances β integrin and EGF receptor recycling and increases cell migration by triggering a positive feedback loop involving the activation of dynamin-1 (Dyn1) and accumulation of a spatially-restricted subpopulation of APPL1-positive ‘perimeter’ endosomes. DNM1 is upregulated at both the mRNA and protein levels in a manner dependent on expression of GOF mutant p53. Perimeter APPL1 endosomes are required for rapid recycling of EGFR and β1 integrins and modulate Akt signaling and Dyn1 activation to create the positive feedback loop that culminates in increased focal adhesion turnover and cell migration. Thus, Dyn1- and Akt-dependent perimeter APPL1 endosomes function as a nexus, integrating signaling and receptor trafficking, that can be co-opted by cancer cells for mutant p53-driven migration and invasion.


Sign in / Sign up

Export Citation Format

Share Document